cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 48 results. Next

A330677 Number of non-isomorphic balanced reduced multisystems of weight n and maximum depth whose leaves (which are multisets of atoms) are sets.

Original entry on oeis.org

1, 1, 1, 2, 11, 81, 859
Offset: 0

Views

Author

Gus Wiseman, Dec 30 2019

Keywords

Comments

A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem. The weight of an atom is 1, while the weight of a multiset is the sum of weights of its elements.

Examples

			Non-isomorphic representatives of the a(0) = 1 through a(4) = 11 multisystems:
  {}  {1}  {1,2}  {{1},{1,2}}  {{{1}},{{1},{1,2}}}
                  {{1},{2,3}}  {{{1}},{{1},{2,3}}}
                               {{{1,2}},{{1},{1}}}
                               {{{1}},{{2},{1,2}}}
                               {{{1,2}},{{1},{2}}}
                               {{{1}},{{2},{1,3}}}
                               {{{1,2}},{{1},{3}}}
                               {{{1}},{{2},{3,4}}}
                               {{{1,2}},{{3},{4}}}
                               {{{2}},{{1},{1,3}}}
                               {{{2,3}},{{1},{1}}}
		

Crossrefs

The version with all distinct atoms is A000111.
Non-isomorphic set multipartitions are A049311.
The (non-maximal) tree version is A330626.
Allowing leaves to be multisets gives A330663.
The case with prescribed degrees is A330664.
The version allowing all depths is A330668.

A330728 Number of balanced reduced multisystems of maximum depth whose degrees (atom multiplicities) are the prime indices of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 3, 7, 5, 5, 11, 16, 16, 27, 18, 61, 62, 272, 45, 123, 61, 1385, 105, 152, 272, 501, 211, 7936, 362
Offset: 1

Views

Author

Gus Wiseman, Dec 30 2019

Keywords

Comments

A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. A multiset whose multiplicities are the prime indices of n (such as row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.

Examples

			The a(n) multisystems for n = 3, 6, 8, 9, 10, 12 (commas and outer brackets elided):
  11  {1}{12}  {1}{23}  {{1}}{{1}{22}}  {{1}}{{1}{12}}  {{1}}{{1}{23}}
      {2}{11}  {2}{13}  {{11}}{{2}{2}}  {{11}}{{1}{2}}  {{11}}{{2}{3}}
               {3}{12}  {{1}}{{2}{12}}  {{1}}{{2}{11}}  {{1}}{{2}{13}}
                        {{12}}{{1}{2}}  {{12}}{{1}{1}}  {{12}}{{1}{3}}
                        {{2}}{{1}{12}}  {{2}}{{1}{11}}  {{1}}{{3}{12}}
                        {{2}}{{2}{11}}                  {{13}}{{1}{2}}
                        {{22}}{{1}{1}}                  {{2}}{{1}{13}}
                                                        {{2}}{{3}{11}}
                                                        {{23}}{{1}{1}}
                                                        {{3}}{{1}{12}}
                                                        {{3}}{{2}{11}}
		

Crossrefs

The version with distinct atoms is A006472.
The non-maximal version is A318846.
A tree version is A318848, with orderless version A318849.
The unlabeled version is A330664.
Final terms in each row of A330727.
See also A330675 (strongly normal), A330676 (normal), and A330726 (partition).

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[Reverse[FactorInteger[n]],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
    				

Formula

a(2^n) = A006472(n).
a(prime(n)) = A000111(n - 1).

A246040 a(1)=1; a(n)=Sum_{k=1..n-1} Stirling_1(n,k)*a(k).

Original entry on oeis.org

1, -1, 5, -47, 719, -16299, 513253, -21430513, 1145710573, -76317960163, 6197399680779, -602640663660199, 69134669061681469, -9239224408001877873, 1422887941494773642817, -250160794466824215921275, 49797413478450579190546203, -11142367835115998962269070519, 2784355004138005473128335461749
Offset: 1

Views

Author

N. J. A. Sloane, Aug 22 2014

Keywords

Comments

2*Sum_{k>=1} a(k-1)/fallfac(n,k) = -1/n + Sum_{k>=1} (1 + a(k-1))/n^k, with the falling factorials fallfac(n,k) = Product_{j=0..k-1}(n-j). - Vaclav Kotesovec, Aug 04 2015

Crossrefs

A signed version of A086555.

Programs

  • Maple
    with(combinat);
    Y:=proc(n) option remember; local k; if n=1 then 1 else add(stirling1(n,k)*Y(k),k=1..n-1); fi; end;
    [seq(Y(n),n=1..35)];
  • Mathematica
    Clear[a]; a[1] = 1; a[n_] := a[n] = Sum[StirlingS1[n, k]*a[k], {k, 1, n-1}]; Table[a[n], {n, 1, 20}] (* Vaclav Kotesovec, Aug 04 2015 *)

Formula

a(n) ~ (-1)^(n+1) * c * n!^2 / (n^(1-log(2)/3) * (2*log(2))^n), where c = A260932 = 0.9031646749584662473216609915945142350500875792441051556... . - Vaclav Kotesovec, Aug 04 2015

A330666 Number of non-isomorphic balanced reduced multisystems whose degrees (atom multiplicities) are the weakly decreasing prime indices of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 6, 2, 10, 11, 20, 15, 90, 51, 80, 6, 468, 93, 2910, 80, 521, 277, 20644, 80, 334, 1761, 393, 521, 165874, 1374
Offset: 1

Views

Author

Gus Wiseman, Dec 30 2019

Keywords

Comments

A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. A multiset whose multiplicities are the prime indices of n (such as row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(9) = 10 multisystems (commas and outer brackets elided):
    1  11  12  111      112      1111            123      1122
               {1}{11}  {1}{12}  {1}{111}        {1}{23}  {1}{122}
                        {2}{11}  {11}{11}                 {11}{22}
                                 {1}{1}{11}               {12}{12}
                                 {{1}}{{1}{11}}           {1}{1}{22}
                                 {{11}}{{1}{1}}           {1}{2}{12}
                                                          {{1}}{{1}{22}}
                                                          {{11}}{{2}{2}}
                                                          {{1}}{{2}{12}}
                                                          {{12}}{{1}{2}}
Non-isomorphic representatives of the a(12) = 15 multisystems:
  {1,1,2,3}
  {{1},{1,2,3}}
  {{1,1},{2,3}}
  {{1,2},{1,3}}
  {{2},{1,1,3}}
  {{1},{1},{2,3}}
  {{1},{2},{1,3}}
  {{2},{3},{1,1}}
  {{{1}},{{1},{2,3}}}
  {{{1,1}},{{2},{3}}}
  {{{1}},{{2},{1,3}}}
  {{{1,2}},{{1},{3}}}
  {{{2}},{{1},{1,3}}}
  {{{2}},{{3},{1,1}}}
  {{{2,3}},{{1},{1}}}
		

Crossrefs

The labeled version is A318846.
The maximum-depth version is A330664.
Unlabeled balanced reduced multisystems by weight are A330474.
The case of constant or strict atoms is A318813.

Formula

a(2^n) = a(prime(n)) = A318813(n).

A330727 Irregular triangle read by rows where T(n,k) is the number of balanced reduced multisystems of depth k whose degrees (atom multiplicities) are the prime indices of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 2, 1, 3, 1, 7, 7, 1, 5, 5, 1, 5, 9, 5, 1, 9, 11, 1, 9, 28, 36, 16, 1, 10, 24, 16, 1, 14, 38, 27, 1, 13, 18, 1, 13, 69, 160, 164, 61, 1, 24, 79, 62, 1, 20, 160, 580, 1022, 855, 272, 1, 19, 59, 45, 1, 27, 138, 232, 123, 1, 17, 77, 121, 61
Offset: 2

Views

Author

Gus Wiseman, Jan 04 2020

Keywords

Comments

A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. A multiset whose multiplicities are the prime indices of n (such as row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.

Examples

			Triangle begins:
   {}
   1
   1
   1   1
   1   2
   1   3   2
   1   3
   1   7   7
   1   5   5
   1   5   9   5
   1   9  11
   1   9  28  36  16
   1  10  24  16
   1  14  38  27
   1  13  18
   1  13  69 160 164  61
   1  24  79  62
For example, row n = 12 counts the following multisystems:
  {1,1,2,3}  {{1},{1,2,3}}    {{{1}},{{1},{2,3}}}
             {{1,1},{2,3}}    {{{1,1}},{{2},{3}}}
             {{1,2},{1,3}}    {{{1}},{{2},{1,3}}}
             {{2},{1,1,3}}    {{{1,2}},{{1},{3}}}
             {{3},{1,1,2}}    {{{1}},{{3},{1,2}}}
             {{1},{1},{2,3}}  {{{1,3}},{{1},{2}}}
             {{1},{2},{1,3}}  {{{2}},{{1},{1,3}}}
             {{1},{3},{1,2}}  {{{2}},{{3},{1,1}}}
             {{2},{3},{1,1}}  {{{2,3}},{{1},{1}}}
                              {{{3}},{{1},{1,2}}}
                              {{{3}},{{2},{1,1}}}
		

Crossrefs

Row sums are A318846.
Final terms in each row are A330728.
Row prime(n) is row n of A330784.
Row 2^n is row n of A008826.
Row n is row A181821(n) of A330667.
Column k = 3 is A318284(n) - 2 for n > 2.

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[Reverse[FactorInteger[n]],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
    				

Formula

T(2^n,k) = A008826(n,k).

A308444 a(0) = 1; a(n) = Sum_{k=1..n} Stirling2(n,k)*a(n-k).

Original entry on oeis.org

1, 1, 2, 6, 27, 178, 1701, 23444, 464207, 13175526, 535353033, 31114680549, 2585577239479, 307143443783879, 52156058585285410, 12661558539485464967, 4394996515200407462730, 2181761307828685811029286, 1549298114199282873678255787, 1574165879361329032738370945407
Offset: 0

Views

Author

Ilya Gutkovskiy, May 27 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(a(n-j)*Stirling2(n, j), j=1..n))
        end:
    seq(a(n), n=0..22);  # Alois P. Heinz, Feb 25 2025
  • Mathematica
    a[n_] := a[n] = Sum[StirlingS2[n, k] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 19}]

Formula

log(a(n)) ~ n^2 * log(3) / 6. - Vaclav Kotesovec, May 28 2019

A330627 Number of non-isomorphic phylogenetic trees with n nodes.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 4, 5, 9, 14, 24, 39, 69, 116, 205, 357, 632, 1118, 2001, 3576, 6445, 11627, 21080, 38293, 69819, 127539, 233644, 428825, 788832, 1453589, 2683602, 4962167, 9190155, 17044522, 31655676, 58866237, 109600849, 204293047, 381212823, 712073862
Offset: 1

Views

Author

Gus Wiseman, Dec 28 2019

Keywords

Comments

A phylogenetic tree is a series-reduced rooted tree whose leaves are (usually disjoint) sets. Each branching as well as each element of each leaf contributes to the number of nodes.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(9) = 9 trees (commas and outer brackets elided):
  1  12  123  1234    12345    123456     1234567      12345678
              (1)(2)  (1)(23)  (1)(234)   (1)(2345)    (1)(23456)
                               (12)(34)   (12)(345)    (12)(3456)
                               (1)(2)(3)  (1)(2)(34)   (123)(456)
                                          (1)((2)(3))  (1)(2)(345)
                                                       (1)(23)(45)
                                                       (1)((2)(34))
                                                       (1)(2)(3)(4)
                                                       (12)((3)(4))
		

Crossrefs

Phylogenetic trees by number of labels are A005804, with unlabeled version A141268.
Balanced phylogenetic trees are A320154.

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(v=[0]); for(n=1, n-1, v=concat(v, EulerT(v)[n] - v[n] + 1)); v} \\ Andrew Howroyd, Jan 02 2021

Formula

G.f.: A(x) satisfies A(x) = x*(1/(1-x) - A(x) - 2 + exp(Sum_{k>0} A(x^k)/k)). - Andrew Howroyd, Jan 02 2021

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 02 2021

A330667 Irregular triangle read by rows where T(n,k) is the number of balanced reduced multisystems of depth k whose atoms are the prime indices of n.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 2, 0, 1, 1, 0, 1, 0, 1, 3, 2, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 0, 1, 0, 1, 1, 5, 5, 0, 1, 0, 1, 0, 1, 1, 0, 1, 2, 0, 1, 1, 3, 0, 1, 1, 5, 9, 5, 0, 1, 0, 1, 0, 1, 0, 1, 7, 7, 0, 1, 1, 0, 1, 0, 1, 5, 5, 0, 1, 1, 3
Offset: 1

Views

Author

Gus Wiseman, Dec 27 2019

Keywords

Comments

A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			Triangle begins:
  {}
  1
  1
  1 0
  1
  1 0
  1
  1 1 0
  1 0
  1 0
  1
  1 2 0
  1
  1 0
  1 0
  1 3 2 0
  1
  1 2 0
  1
  1 2 0
Row n = 84 counts the following multisystems (commas elided):
  {1124}  {{1}{124}}    {{{1}}{{1}{24}}}
          {{11}{24}}    {{{11}}{{2}{4}}}
          {{12}{14}}    {{{1}}{{2}{14}}}
          {{2}{114}}    {{{12}}{{1}{4}}}
          {{4}{112}}    {{{1}}{{4}{12}}}
          {{1}{1}{24}}  {{{14}}{{1}{2}}}
          {{1}{2}{14}}  {{{2}}{{1}{14}}}
          {{1}{4}{12}}  {{{2}}{{4}{11}}}
          {{2}{4}{11}}  {{{24}}{{1}{1}}}
                        {{{4}}{{1}{12}}}
                        {{{4}}{{2}{11}}}
		

Crossrefs

Row lengths are A001222.
Row sums are A318812.
The last nonzero term of row n is A330665(n).
Column k = 2 is 0 if n is prime; otherwise it is A001055(n) - 2.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    totfac[n_,k_]:=If[k==1,1,Sum[totfac[Times@@Prime/@f,k-1],{f,Select[facs[n],1
    				

A006541 Number of dissimilarity relations on an n-set.

Original entry on oeis.org

1, 1, 13, 4683, 102247563, 230283190977853, 81124824998504073881821, 6297562064950066033518373935334635, 144199280951655469628360978109406917583513090155, 1255482482235481041484313695469155949742941807533901307975355741
Offset: 1

Views

Author

Keywords

References

  • M. Schader, Hierarchical analysis: classification with ordinal object dissimilarities, Metrika, 27 (1980), 127-132.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    b:= proc(n, k) b(n, k):= `if`(n=0, k!, k*b(n-1, k)+b(n-1, k+1)) end:
    a:= n-> b(n*(n-1)/2, 0):
    seq(a(n), n=1..12);  # Alois P. Heinz, Dec 02 2024
  • Mathematica
    a[n_] := PolyLog[-n(n-1)/2, 1/2]/2; a[1]=1; Table[a[n], {n, 1, 9}] (* Jean-François Alcover, Jun 28 2012, after Wouter Meeussen *)
  • PARI
    a(n)=ceil(polylog(-n*(n-1)/2, 1/2)/2) \\ Charles R Greathouse IV, Aug 27 2014

Formula

a(n) = Sum_{i=0..m} (m-i)!*Stirling2(m, m-i), where m = n*(n-1)/2.
a(n) = A000670(n*(n-1)/2).

Extensions

More terms from James Sellers, Jan 19 2000

A154960 Triangle read by rows: matrix inverse of A154959.

Original entry on oeis.org

1, 1, 1, 4, 3, 1, 32, 25, 6, 1, 436, 340, 85, 10, 1, 9012, 7026, 1755, 215, 15, 1, 262760, 204862, 51156, 6265, 455, 21, 1, 10270696, 8007602, 1999620, 244811, 17780, 854, 28, 1, 518277560, 404077632, 100904602, 12353796, 896931, 43092, 1470, 36, 1
Offset: 1

Views

Author

Mats Granvik, Jan 18 2009

Keywords

Comments

First column is A005121.
Second column is A154961.

Examples

			Triangle starts
1,
1, 1,
4, 3, 1,
32, 25, 6, 1,
436, 340, 85, 10, 1,
9012, 7026, 1755, 215, 15, 1,
262760, 204862, 51156, 6265, 455, 21, 1,
10270696, 8007602, 1999620, 244811, 17780, 854, 28, 1,
518277560, 404077632, 100904602, 12353796, 896931, 43092, 1470, 36, 1
		
Previous Showing 31-40 of 48 results. Next