A275706
a(n) = Re([n]_{1+i}!), where [n]_q! is the q-factorial, i = sqrt(-1).
Original entry on oeis.org
1, 1, 2, 1, -40, 135, -860, 20145, -137100, -6726225, -212460900, -3642898575, 654642826500, -26505894416625, 3335048243533500, -1368325090374591375, 133951676745003682500, 123266968248328746879375, 63057521158814641016317500, 17732380504905960076345280625
Offset: 0
-
a:= n-> Re(mul(((1+I)^j-1)/((1+I)-1), j=1..n)):
seq(a(n), n=0..20); # Alois P. Heinz, Sep 14 2016
-
Re@Table[QFactorial[n, 1 + I], {n, 0, 20}]
A075272
BinomialMean (BM) transform of A075271, which see for the definition of (BM).
Original entry on oeis.org
1, 2, 6, 34, 422, 11586, 678982, 82653026, 20565923814, 10362872458882, 10517568142605446, 21434335059927667362, 87558678536857464017446, 716228573446369122069676994, 11725371140175829761708518252742
Offset: 0
-
iBM:= proc(p) proc (n) option remember; add (2^(k) *p(k) *(-1)^(n-k) *binomial(n,k), k=0..n) end end: a:='a': aa:= iBM(a): a:= n-> `if` (n=0, 1, 2*aa(n-1)): seq (a(n), n=0..16); # Alois P. Heinz, Sep 09 2008
-
Table[Sum[QFactorial[k, 2] Binomial[n, k], {k, 0, n}], {n, 0, 15}] (* Vladimir Reshetnikov, Oct 16 2016 *)
A152552
Coefficients in a q-analog of the function [LambertW(-2x)/(-2x)]^(1/2) at q=2.
Original entry on oeis.org
1, 1, 7, 148, 7611, 872341, 213651052, 109327540680, 115381584785027, 249159124679346991, 1095244903267253760231, 9765839519517673327876328, 176188639876138769279299798900, 6419535615261099235478072782943388
Offset: 0
G.f.: A(x) = 1 + x + 7/3*x^2 + 148/21*x^3 + 7611/315*x^4 + 872341/9765*x^5 +...
e_q(x,2) = 1 + x + x^2/3 + x^3/21 + x^4/315 + x^5/9765 + x^6/615195 +...
The q-factorial of n is faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1).
-
{a(n,q=2)=local(e_q=1+sum(j=1,n,x^j/prod(i=1,j,(q^i-1)/(q-1))), LW2_q=sqrt(serreverse(x/(e_q+x*O(x^n))^2)/x)); polcoeff(LW2_q+x*O(x^n),n,x)*prod(i=1,n,(q^i-1)/(q-1))}
A204243
Determinant of the n-th principal submatrix of A204242.
Original entry on oeis.org
1, 2, 11, 144, 4149, 251622, 31340799, 7913773980, 4024015413705, 4106387069191890, 8395359475529822355, 34357677843892688699400, 281336437060919094044274525, 4608419756389534634440592965950, 150992374805715685629827976712244775
Offset: 1
-
f:= n -> (1 - add(1/(2^i-1),i=2..n))*mul(2^i-1,i=2..n):
seq(f(n),n=1..30); # Robert Israel, Nov 30 2015
-
f[i_, j_] := 0; f[1, j_] := 1; f[i_, 1] := 1; f[i_, i_] := 2^i - 1;
m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
TableForm[m[8]] (* 8x8 principal submatrix *)
Flatten[Table[f[i, n + 1 - i],
{n, 1, 12}, {i, 1, n}]] (* A204242 *)
Table[Det[m[n]], {n, 1, 15}] (* A204243 *)
Permanent[m_] :=
With[{a = Array[x, Length[m]]},
Coefficient[Times @@ (m.a), Times @@ a]];
Table[Permanent[m[n]], {n, 1, 15}] (* A203011 *)
-
vector(20, n, matdet(matrix(n, n, i, j, if(i==1, 1, if(j==1, 1, if(i==j, 2^i-1)))))) \\ Colin Barker, Nov 27 2015
A274983
a(n) = [n]phi! + [n]{1-phi}!, where [n]_q! is the q-factorial, phi = (1+sqrt(5))/2.
Original entry on oeis.org
2, 2, 3, 14, 130, 2120, 58120, 2636360, 196132320, 23805331920, 4698862837680, 1505416321070640, 781888977967152000, 657866357975539785600, 896265744457831561756800, 1976607903479486428467148800, 7055269158071576119808840371200
Offset: 0
For n = 3, [3]_phi! = 1060 + 474*sqrt(5), so a(5) = 2*1060 = 2120 and A274985(5) = 2*474 = 948.
-
Round@Table[QFactorial[n, GoldenRatio] + QFactorial[n, 1 - GoldenRatio], {n, 0, 20}] (* Round is equivalent to FullSimplify here, but is much faster *)
A276688
a(n) = Im([n]_{1+i}!), where [n]_q! is the q-factorial, i = sqrt(-1).
Original entry on oeis.org
0, 0, 1, 8, 5, -220, 1895, -9140, -302175, -2778300, -95631825, -10071428100, -236788407375, 57706241794500, -7412904844112625, 525300693117661500, 348922898045520800625, 55166584329677385922500, 28368558145043150339199375, 46873210124734003815040957500
Offset: 0
-
a:= n-> Im(mul(((1+I)^j-1)/((1+I)-1), j=1..n)):
seq(a(n), n=0..20); # Alois P. Heinz, Sep 14 2016
-
Im@Table[QFactorial[n, 1 + I], {n, 0, 20}]
A028692
23-factorial numbers.
Original entry on oeis.org
1, 22, 11616, 141320256, 39547060439040, 254538406080331591680, 37680818974206486508802211840, 128296611269497862923425473853914480640, 10047034036599529256387830050150921763777884979200, 18096242094820543236399273859296273669601076798103392511590400
Offset: 0
Cf.
A005329,
A027871,
A027637,
A027872,
A027873,
A027875,
A027876,
A027877,
A027878,
A027879,
A027880,
A028693,
A028694.
-
FoldList[ #1 (23^#2-1)&, 1, Range[ 20 ] ]
a[n_] := Abs[QPochhammer[23, 23, n]]; Array[a, 10, 0] (* Amiram Eldar, Jul 14 2025 *)
-
a(n) = prod(k = 1, n, 23^k - 1); \\ Amiram Eldar, Jul 14 2025
A028693
24-factorial numbers.
Original entry on oeis.org
1, 23, 13225, 182809175, 60651514035625, 482945140644890444375, 92292253139031982469134515625, 423295781586452233477722435457009484375, 46594416147080909523690749946376478698532878515625, 123093479909646650570543074660375014342475500150254964721484375
Offset: 1
Cf.
A005329,
A027871,
A027637,
A027872,
A027873,
A027875,
A027876,
A027877,
A027878,
A027879,
A027880,
A028692,
A028694.
-
FoldList[ #1 (24^#2-1)&, 1, Range[ 20 ] ]
a[n_] := Abs[QPochhammer[24, 24, n]]; Array[a, 10, 0] (* Amiram Eldar, Jul 14 2025 *)
-
a(n) = prod(k = 1, n, 24^k - 1); \\ Amiram Eldar, Jul 14 2025
A028694
25-factorial numbers.
Original entry on oeis.org
1, 24, 14976, 233985024, 91400166014976, 892579654839833985024, 217914953902301689160166014976, 1330047325845938129350664710839833985024, 202949115880923695556030391039325175289160166014976, 774189437411767935420978172981557217629743778824710839833985024
Offset: 0
Cf.
A005329,
A027871,
A027637,
A027872,
A027873,
A027875,
A027876,
A027877,
A027878,
A027879,
A027880,
A028692,
A028693.
-
FoldList[ #1 (25^#2-1)&, 1, Range[ 20 ] ]
a[n_] := Abs[QPochhammer[25, 25, n]]; Array[a, 10, 0] (* Amiram Eldar, Jul 14 2025 *)
-
a(n) = prod(k = 1, n, 25^k - 1); \\ Amiram Eldar, Jul 14 2025
A157638
Triangle of the elementwise product of binomial coefficients with q-binomial coefficients [n,k] for q = 2.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 21, 21, 1, 1, 60, 210, 60, 1, 1, 155, 1550, 1550, 155, 1, 1, 378, 9765, 27900, 9765, 378, 1, 1, 889, 56007, 413385, 413385, 56007, 889, 1, 1, 2040, 302260, 5440680, 14055090, 5440680, 302260, 2040, 1, 1, 4599, 1563660, 66194940
Offset: 0
Triangle begins:
1;
1, 1;
1, 6, 1;
1, 21, 21, 1;
1, 60, 210, 60, 1;
1, 155, 1550, 1550, 155, 1;
1, 378, 9765, 27900, 9765, 378, 1;
1, 889, 56007, 413385, 413385, 56007, 889, 1;
1, 2040, 302260, 5440680, 14055090, 5440680, 302260, 2040, 1;
1, 4599, 1563660, 66194940, 417028122, 417028122, 66194940, 1563660, 4599, 1;
-
q:=2; [[k le 0 select 1 else Binomial(n,k)*(&*[(1-q^(n-j))/(1-q^(j+1)): j in [0..(k-1)]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Nov 17 2018
-
t[n_, m_] = Product[Sum[k*(m + 1)^i, {i, 0, k - 1}], {k, 1, n}];
b[n_, k_, m_] = t[n, m]/(t[k, m]*t[n - k, m]);
Flatten[Table[Table[b[n, k, 1], {k, 0, n}], {n, 0, 10}]]
-
T(n,k) = {binomial(n,k)*polcoef(x^k/prod(j=0, k, 1-2^j*x+x*O(x^n)), n)} \\ Andrew Howroyd, Nov 14 2018
-
q=2; for(n=0,10, for(k=0,n, print1(binomial(n,k)*prod(j=0,k-1, (1-q^(n-j))/(1-q^(j+1))), ", "))) \\ G. C. Greubel, Nov 17 2018
-
[[ binomial(n,k)*gaussian_binomial(n,k).subs(q=2) for k in range(n+1)] for n in range(10)] # G. C. Greubel, Nov 17 2018
Comments