cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 80 results. Next

A275706 a(n) = Re([n]_{1+i}!), where [n]_q! is the q-factorial, i = sqrt(-1).

Original entry on oeis.org

1, 1, 2, 1, -40, 135, -860, 20145, -137100, -6726225, -212460900, -3642898575, 654642826500, -26505894416625, 3335048243533500, -1368325090374591375, 133951676745003682500, 123266968248328746879375, 63057521158814641016317500, 17732380504905960076345280625
Offset: 0

Views

Author

Vladimir Reshetnikov, Sep 13 2016

Keywords

Crossrefs

Cf. A276688 (imaginary part), A005329.

Programs

  • Maple
    a:= n-> Re(mul(((1+I)^j-1)/((1+I)-1), j=1..n)):
    seq(a(n), n=0..20);  # Alois P. Heinz, Sep 14 2016
  • Mathematica
    Re@Table[QFactorial[n, 1 + I], {n, 0, 20}]

A075272 BinomialMean (BM) transform of A075271, which see for the definition of (BM).

Original entry on oeis.org

1, 2, 6, 34, 422, 11586, 678982, 82653026, 20565923814, 10362872458882, 10517568142605446, 21434335059927667362, 87558678536857464017446, 716228573446369122069676994, 11725371140175829761708518252742
Offset: 0

Views

Author

John W. Layman, Sep 11 2002

Keywords

Comments

a(n) = 2*A075271(n-1), for n >= 1.
Binomial transform of A005329. - Vladimir Reshetnikov, Nov 20 2015

Crossrefs

Programs

  • Maple
    iBM:= proc(p) proc (n) option remember; add (2^(k) *p(k) *(-1)^(n-k) *binomial(n,k), k=0..n) end end: a:='a': aa:= iBM(a): a:= n-> `if` (n=0, 1, 2*aa(n-1)): seq (a(n), n=0..16); # Alois P. Heinz, Sep 09 2008
  • Mathematica
    Table[Sum[QFactorial[k, 2] Binomial[n, k], {k, 0, n}], {n, 0, 15}] (* Vladimir Reshetnikov, Oct 16 2016 *)

Formula

G.f.: Sum_{n>=0} x^n*Product_{i=1..n}(2^i/(1+(2^i-1)*x)). - Vladeta Jovovic, Mar 10 2008
O.g.f. as a continued fraction of Stieltjes's type: 1/(1 - 2*x/(1 - x/(1 - 2^3*x/(1 - 3^2*x/(1 - 2^5*x/(1 - 7^2*x/(1 - 2^7*x/(1 - 15^2*x/(1 - 2^9*x/(1 - 31^2*x - ... )))))))))). Cf. A005329. - Peter Bala, Nov 10 2017

Extensions

More terms from Alois P. Heinz, Sep 09 2008

A152552 Coefficients in a q-analog of the function [LambertW(-2x)/(-2x)]^(1/2) at q=2.

Original entry on oeis.org

1, 1, 7, 148, 7611, 872341, 213651052, 109327540680, 115381584785027, 249159124679346991, 1095244903267253760231, 9765839519517673327876328, 176188639876138769279299798900, 6419535615261099235478072782943388
Offset: 0

Views

Author

Paul D. Hanna, Dec 07 2008

Keywords

Examples

			G.f.: A(x) = 1 + x + 7/3*x^2 + 148/21*x^3 + 7611/315*x^4 + 872341/9765*x^5 +...
e_q(x,2) = 1 + x + x^2/3 + x^3/21 + x^4/315 + x^5/9765 + x^6/615195 +...
The q-factorial of n is faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1).
		

Crossrefs

Cf. A152550, A152551 (q=-1), A152553 (q=3); A005329.

Programs

  • PARI
    {a(n,q=2)=local(e_q=1+sum(j=1,n,x^j/prod(i=1,j,(q^i-1)/(q-1))), LW2_q=sqrt(serreverse(x/(e_q+x*O(x^n))^2)/x)); polcoeff(LW2_q+x*O(x^n),n,x)*prod(i=1,n,(q^i-1)/(q-1))}

Formula

G.f. satisfies: A(x) = e_q( x*A(x)^2, 2) and A( x/e_q(x,2)^2 ) = e_q(x,2) where e_q(x,q) = Sum_{n>=0} x^n/faq(n,q) is the q-exponential function.
G.f.: A(x) = Sum_{n>=0} a(n)*x^n/faq(n,2) where faq(n,2) = q-factorial of n at q=2.
G.f.: A(x) = [(1/x)*Series_Reversion( x/e_q(x,2)^2 )]^(1/2)
a(n) = Sum_{k=0..n(n-1)/2} A152550(n,k)*2^k.

A204243 Determinant of the n-th principal submatrix of A204242.

Original entry on oeis.org

1, 2, 11, 144, 4149, 251622, 31340799, 7913773980, 4024015413705, 4106387069191890, 8395359475529822355, 34357677843892688699400, 281336437060919094044274525, 4608419756389534634440592965950, 150992374805715685629827976712244775
Offset: 1

Views

Author

Clark Kimberling, Jan 13 2012

Keywords

Crossrefs

Programs

  • Maple
    f:= n -> (1 - add(1/(2^i-1),i=2..n))*mul(2^i-1,i=2..n):
    seq(f(n),n=1..30); # Robert Israel, Nov 30 2015
  • Mathematica
    f[i_, j_] := 0; f[1, j_] := 1; f[i_, 1] := 1; f[i_, i_] := 2^i - 1;
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8x8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 12}, {i, 1, n}]]     (* A204242 *)
    Table[Det[m[n]], {n, 1, 15}]  (* A204243 *)
    Permanent[m_] :=
      With[{a = Array[x, Length[m]]},
       Coefficient[Times @@ (m.a), Times @@ a]];
    Table[Permanent[m[n]], {n, 1, 15}]   (* A203011 *)
  • PARI
    vector(20, n, matdet(matrix(n, n, i, j, if(i==1, 1, if(j==1, 1, if(i==j, 2^i-1)))))) \\ Colin Barker, Nov 27 2015

Formula

a(n) = (1 - Sum_{k=2..n} 1/(2^k-1)) * Product_{k=2..n} (2^k-1) = 2*A005329(n) - A203011(n). - Robert Israel, Nov 30 2015

A274983 a(n) = [n]phi! + [n]{1-phi}!, where [n]_q! is the q-factorial, phi = (1+sqrt(5))/2.

Original entry on oeis.org

2, 2, 3, 14, 130, 2120, 58120, 2636360, 196132320, 23805331920, 4698862837680, 1505416321070640, 781888977967152000, 657866357975539785600, 896265744457831561756800, 1976607903479486428467148800, 7055269158071576119808840371200
Offset: 0

Views

Author

Vladimir Reshetnikov, Sep 23 2016

Keywords

Examples

			For n = 3, [3]_phi! = 1060 + 474*sqrt(5), so a(5) = 2*1060 = 2120 and A274985(5) = 2*474 = 948.
		

Crossrefs

Programs

  • Mathematica
    Round@Table[QFactorial[n, GoldenRatio] + QFactorial[n, 1 - GoldenRatio], {n, 0, 20}] (* Round is equivalent to FullSimplify here, but is much faster *)

Formula

a(n) ~ c * phi^(n*(n+3)/2), where c = QPochhammer(phi-1) = A276987 = 0.1208019218617061294237231569887920563043992516794... . - Vaclav Kotesovec, Sep 24 2016
From Vladimir Reshetnikov, Sep 24 2016 (Start)
[n]_phi! = (a(n) + A274985(n)*sqrt(5))/2.
[n]_{1-phi}! = (a(n) - A274985(n)*sqrt(5))/2. (End)

A276688 a(n) = Im([n]_{1+i}!), where [n]_q! is the q-factorial, i = sqrt(-1).

Original entry on oeis.org

0, 0, 1, 8, 5, -220, 1895, -9140, -302175, -2778300, -95631825, -10071428100, -236788407375, 57706241794500, -7412904844112625, 525300693117661500, 348922898045520800625, 55166584329677385922500, 28368558145043150339199375, 46873210124734003815040957500
Offset: 0

Views

Author

Vladimir Reshetnikov, Sep 13 2016

Keywords

Crossrefs

Cf. A275706 (real part), A005329.

Programs

  • Maple
    a:= n-> Im(mul(((1+I)^j-1)/((1+I)-1), j=1..n)):
    seq(a(n), n=0..20);  # Alois P. Heinz, Sep 14 2016
  • Mathematica
    Im@Table[QFactorial[n, 1 + I], {n, 0, 20}]

A028692 23-factorial numbers.

Original entry on oeis.org

1, 22, 11616, 141320256, 39547060439040, 254538406080331591680, 37680818974206486508802211840, 128296611269497862923425473853914480640, 10047034036599529256387830050150921763777884979200, 18096242094820543236399273859296273669601076798103392511590400
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[ #1 (23^#2-1)&, 1, Range[ 20 ] ]
    a[n_] := Abs[QPochhammer[23, 23, n]]; Array[a, 10, 0] (* Amiram Eldar, Jul 14 2025 *)
  • PARI
    a(n) = prod(k = 1, n, 23^k - 1); \\ Amiram Eldar, Jul 14 2025

Formula

From Amiram Eldar, Jul 14 2025: (Start)
a(n) = Product_{k=1..n} (23^k-1).
a(n) ~ c * 23^(n*(n+1)/2), where c = Product_{k>=1} (1 - 1/23^k) = 0.954631535623... . (End)

A028693 24-factorial numbers.

Original entry on oeis.org

1, 23, 13225, 182809175, 60651514035625, 482945140644890444375, 92292253139031982469134515625, 423295781586452233477722435457009484375, 46594416147080909523690749946376478698532878515625, 123093479909646650570543074660375014342475500150254964721484375
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[ #1 (24^#2-1)&, 1, Range[ 20 ] ]
    a[n_] := Abs[QPochhammer[24, 24, n]]; Array[a, 10, 0] (* Amiram Eldar, Jul 14 2025 *)
  • PARI
    a(n) = prod(k = 1, n, 24^k - 1); \\ Amiram Eldar, Jul 14 2025

Formula

From Amiram Eldar, Jul 14 2025: (Start)
a(n) = Product_{k=1..n} (24^k-1).
a(n) ~ c * 24^(n*(n+1)/2), where c = Product_{k>=1} (1 - 1/24^k) = 0.956597348026... . (End)

A028694 25-factorial numbers.

Original entry on oeis.org

1, 24, 14976, 233985024, 91400166014976, 892579654839833985024, 217914953902301689160166014976, 1330047325845938129350664710839833985024, 202949115880923695556030391039325175289160166014976, 774189437411767935420978172981557217629743778824710839833985024
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FoldList[ #1 (25^#2-1)&, 1, Range[ 20 ] ]
    a[n_] := Abs[QPochhammer[25, 25, n]]; Array[a, 10, 0] (* Amiram Eldar, Jul 14 2025 *)
  • PARI
    a(n) = prod(k = 1, n, 25^k - 1); \\ Amiram Eldar, Jul 14 2025

Formula

From Amiram Eldar, Jul 14 2025: (Start)
a(n) = Product_{k=1..n} (25^k-1).
a(n) ~ c * 25^(n*(n+1)/2), where c = Product_{k>=1} (1 - 1/25^k) = 0.958400102563... . (End)

A157638 Triangle of the elementwise product of binomial coefficients with q-binomial coefficients [n,k] for q = 2.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 21, 21, 1, 1, 60, 210, 60, 1, 1, 155, 1550, 1550, 155, 1, 1, 378, 9765, 27900, 9765, 378, 1, 1, 889, 56007, 413385, 413385, 56007, 889, 1, 1, 2040, 302260, 5440680, 14055090, 5440680, 302260, 2040, 1, 1, 4599, 1563660, 66194940
Offset: 0

Views

Author

Roger L. Bagula, Mar 03 2009

Keywords

Comments

Other triangles in the family (see name) include: q = 2 (this triangle), q = 3 (see A157640), and q = 4 (see A157641). - Werner Schulte, Nov 16 2018

Examples

			Triangle begins:
  1;
  1, 1;
  1, 6, 1;
  1, 21, 21, 1;
  1, 60, 210, 60, 1;
  1, 155, 1550, 1550, 155, 1;
  1, 378, 9765, 27900, 9765, 378, 1;
  1, 889, 56007, 413385, 413385, 56007, 889, 1;
  1, 2040, 302260, 5440680, 14055090, 5440680, 302260, 2040, 1;
  1, 4599, 1563660, 66194940, 417028122, 417028122, 66194940, 1563660, 4599, 1;
		

Crossrefs

Programs

  • Magma
    q:=2; [[k le 0 select 1 else Binomial(n,k)*(&*[(1-q^(n-j))/(1-q^(j+1)): j in [0..(k-1)]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Nov 17 2018
    
  • Mathematica
    t[n_, m_] = Product[Sum[k*(m + 1)^i, {i, 0, k - 1}], {k, 1, n}];
    b[n_, k_, m_] = t[n, m]/(t[k, m]*t[n - k, m]);
    Flatten[Table[Table[b[n, k, 1], {k, 0, n}], {n, 0, 10}]]
  • PARI
    T(n,k) = {binomial(n,k)*polcoef(x^k/prod(j=0, k, 1-2^j*x+x*O(x^n)), n)} \\ Andrew Howroyd, Nov 14 2018
    
  • PARI
    q=2; for(n=0,10, for(k=0,n, print1(binomial(n,k)*prod(j=0,k-1, (1-q^(n-j))/(1-q^(j+1))), ", "))) \\ G. C. Greubel, Nov 17 2018
    
  • Sage
    [[ binomial(n,k)*gaussian_binomial(n,k).subs(q=2) for k in range(n+1)] for n in range(10)] # G. C. Greubel, Nov 17 2018

Formula

T(n,k) = t(n)/(t(k)*t(n-k)) where t(n) = Product_{k=1..n} Sum_{i=0..k-1} k*2^i.
T(n,k) = binomial(n,k)*A022166(n,k) for 0 <= k <= n. - Werner Schulte, Nov 14 2018
T(n,k) = n!*A005329(n)/(k!*A005329(k)*(n-k)!*A005329(n-k)). - Andrew Howroyd, Nov 14 2018

Extensions

Edited and simpler name by Werner Schulte and Andrew Howroyd, Nov 14 2018
Previous Showing 31-40 of 80 results. Next