cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 80 results. Next

A274985 a(n) = ([n]phi! - [n]{1-phi}!)/sqrt(5), where [n]_q! is the q-factorial, phi = (1+sqrt(5))/2.

Original entry on oeis.org

0, 0, 1, 6, 58, 948, 25992, 1179016, 87713040, 10646068080, 2101395344400, 673242645670320, 349671381118477440, 294206779308703578240, 400822226102433353285760, 883965927408694948620295680, 3155212287401150653204012531200
Offset: 0

Views

Author

Vladimir Reshetnikov, Sep 23 2016

Keywords

Examples

			For n = 3, [3]_phi! = 1060 + 474*sqrt(5), so A274983(5) = 2*1060 = 2120 and a(5) = 2*474 = 948.
		

Crossrefs

Programs

  • Mathematica
    Round@Table[(QFactorial[n, GoldenRatio] - QFactorial[n, 1 - GoldenRatio])/Sqrt[5], {n, 0, 20}] (* Round is equivalent to FullSimplify here, but is much faster *)

Formula

[n]_phi! = (A274983(n) + a(n)*sqrt(5))/2.
[n]_{1-phi}! = (A274983(n) - a(n)*sqrt(5))/2.
a(n) ~ c * phi^(n*(n+3)/2) / sqrt(5), where c = QPochhammer(phi-1) = A276987 = 0.1208019218617061294237231569887920563043992516794... . - Vaclav Kotesovec, Sep 24 2016

A277355 a(n) = Product_{k=1..n} (2^k + k).

Original entry on oeis.org

1, 3, 18, 198, 3960, 146520, 10256400, 1384614000, 365538096000, 190445348016000, 196920489848544000, 405459288598152096000, 1665626757561208810368000, 13666467545789718289069440000, 224102734815859800504160677120000, 7346759955468331839927899478024960000
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 10 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[2^k+k, {k, 1, n}], {n, 0, 15}]

Formula

a(n) ~ c * 2^(n*(n+1)/2), where c = Product_{k>=1} (1 + k/2^k) = 5.52995584900...

A288853 Triangle read by rows: T(n,k) is the number of surjective linear mappings from an n-dimensional vector space over F_2 onto a k-dimensional vector space, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 1, 3, 6, 1, 7, 42, 168, 1, 15, 210, 2520, 20160, 1, 31, 930, 26040, 624960, 9999360, 1, 63, 3906, 234360, 13124160, 629959680, 20158709760, 1, 127, 16002, 1984248, 238109760, 26668293120, 2560156139520, 163849992929280, 1, 255, 64770, 16322040, 4047865920, 971487820800, 217613271859200, 41781748196966400, 5348063769211699200
Offset: 0

Views

Author

Geoffrey Critzer, Jun 18 2017

Keywords

Comments

The (q = 2) analog of A008279.
A022166(m,k)*T(n,k) is the number of m X n matrices over F_2 that have rank k.
a(n) is the number of n X n matrices over F_2 in Green's R class containing A where rank(A) = k. - Geoffrey Critzer, Oct 05 2022

Examples

			  1;
  1,  1;
  1,  3,   6;
  1,  7,  42,   168;
  1, 15, 210,  2520,  20160;
  1, 31, 930, 26040, 624960, 9999360;
  ...
		

Crossrefs

Columns k=0-10 give: A000012, A000225, 6*A006095, 168*A006096, 20160*A006097, 9999360*A006110, 20158709760*A022189, 163849992929280*A022190, 5348063769211699200*A022191, 699612310033197642547200*A022192, 366440137299948128422802227200*A022193.
Main diagonal gives A002884.
Cf. A022166.

Programs

  • Mathematica
    Table[Table[Product[q^n - q^i, {i, 0, k - 1}] /. q -> 2, {k, 0, n}], {n, 0,8}] // Grid

Formula

T(n,k) = Product_{j=0..k-1} (2^n - 2^j).
T(n,k) = A002884(k)*A022166(n,k).
Let g_m(x) = Sum_{n>=0} (2^m*x)^n/A005329(n) and e(x) = Sum_{n>=0} x^n/A005329(n). Then Sum_{k>=0} T(n,k)*x^k/A005329(k) = g_n(x)/e(x). - Geoffrey Critzer, Jun 01 2024

A289546 Triangle read by rows. T(n,k) is the number of flags in an n dimensional vector space over GF(2) that have length exactly k, n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 14, 21, 0, 1, 65, 315, 315, 0, 1, 372, 4650, 13020, 9765, 0, 1, 2823, 87234, 527310, 1025325, 615195, 0, 1, 29210, 2291715, 27448764, 105413175, 156259530, 78129765, 0, 1, 417197, 88508205, 2043137265, 14019952275, 38897461575, 46487210175, 19923090075
Offset: 0

Views

Author

Geoffrey Critzer, Jul 28 2017

Keywords

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1,    3;
  0, 1,   14,    21;
  0, 1,   65,   315,    315;
  0, 1,  372,  4650,  13020,    9765;
  0, 1, 2823, 87234, 527310, 1025325, 615195;
		

Crossrefs

Cf. A005329 (main diagonal), A289545 (row sums).

Programs

  • Mathematica
    nn = 8; eq[z_] := Sum[z^n/FunctionExpand[QFactorial[n, q]], {n, 0, nn}];Table[Take[(Table[ FunctionExpand[QFactorial[n, q]] /. q -> 2, {n, 0,  nn}] CoefficientList[Series[ 1/(1 - u (eq[z] - 1)) /. q -> 2, {z, 0, nn}], {z, u}])[[i]], i], {i, 1, nn + 1}] // Grid

Formula

T(n,k)/A005329(n) is the coefficient of y^k*x^n in 1/(1 - y (eq(x) - 1)) where eq(x) is the q-exponential function.

A293844 Number of chains in the partially ordered (by subspace inclusion) set of all subspaces of the vector space GF(2)^n.

Original entry on oeis.org

1, 3, 15, 143, 2783, 111231, 9031551, 1478288639, 485839107071, 319967908160511, 421866566365149183, 1112976522259306192895, 5873986737617632960438271, 62010172563368117470328995839, 1309330918812255261194272293584895, 55294146267102513780208470077042393087
Offset: 0

Views

Author

Geoffrey Critzer, Oct 17 2017

Keywords

Crossrefs

Row sums of A293845.

Programs

  • Mathematica
    nn = 16; eq[z_] := Sum[z^n/FunctionExpand[QFactorial[n, q]], {n, 0, nn}];Table[FunctionExpand[QFactorial[n, q]] /. q -> 2, {n, 0, nn}] CoefficientList[Series[ eq[z]^2/(1 - (eq[z] - 1)) /. q -> 2, {z, 0, nn}], z]

Formula

a(n)/A005329(n) is the coefficient of x^n in eq(x)^2/(2 - eq(x)) where eq(x) is the q-exponential function.

A294640 G.f. A(x) = Sum_{n>=0} x^n/a(n) satisfies: A(x) = A(x^2) + Integral A(x^2) dx.

Original entry on oeis.org

1, 1, 1, 3, 1, 5, 3, 21, 1, 9, 5, 55, 3, 39, 21, 315, 1, 17, 9, 171, 5, 105, 55, 1265, 3, 75, 39, 1053, 21, 609, 315, 9765, 1, 33, 17, 595, 9, 333, 171, 6669, 5, 205, 105, 4515, 55, 2475, 1265, 59455, 3, 147, 75, 3825, 39, 2067, 1053, 57915, 21, 1197, 609, 35931, 315, 19215, 9765, 615195, 1, 65, 33, 2211, 17, 1173, 595, 42245, 9, 657, 333, 24975, 171, 13167, 6669, 526851, 5, 405, 205, 17015, 105, 8925, 4515, 392805, 55, 4895, 2475, 225225, 1265, 117645, 59455, 5648225, 3, 291, 147, 14553, 75, 7575, 3825, 393975, 39, 4095, 2067, 221169, 1053, 114777, 57915, 6428565, 21, 2373, 1197, 137655, 609, 71253, 35931, 4275789, 315, 38115, 19215, 2363445, 9765, 1220625, 615195, 78129765, 1
Offset: 0

Views

Author

Paul D. Hanna, Nov 05 2017

Keywords

Examples

			G.f. A(x) = Sum_{n>=0} x^n/a(n) begins:
A(x) = 1/1 + x/1 + x^2/1 + x^3/3 + x^4/1 + x^5/5 + x^6/3 + x^7/21 + x^8/1 + x^9/9 + x^10/5 + x^11/55 + x^12/3 + x^13/39 + x^14/21 + x^15/315 + x^16/1 + x^17/17 + x^18/9 + x^19/171 + x^20/5 + x^21/105 + x^22/55 + x^23/1265 + x^24/3 + x^25/75 + x^26/39 + x^27/1053 + x^28/21 + x^29/609 + x^30/315 + x^31/9765 + x^32/1 + x^33/33 + x^34/17 + x^35/595 + x^36/9 + x^37/333 + x^38/171 + x^39/6669 + x^40/5 + x^41/205 + x^42/105 + x^43/4515 + x^44/55 + x^45/2475 + x^46/1265 + x^47/59455 + x^48/3 + x^49/147 + x^50/75 + x^51/3825 + x^52/39 + x^53/2067 + x^54/1053 + x^55/57915 + x^56/21 + x^57/1197 + x^58/609 + x^59/35931 + x^60/315 + x^61/19215 + x^62/9765 + x^63/615195 + x^64/1 +...+ x^n/a(n) +...
such that A(x) = A(x^2) + Integral A(x^2) dx.
Further,
A'(x) = A(x^2) + 2*x*A(x^4) + 4*x^3*A(x^8) + 8*x^7*A(x^16) + 16*x^15*A(x^32) + 32*x^31*A(x^64) +...+ 2^n * x^(2^n-1) * A( x^(2^(n+1)) ) +...
where A'(x) = A(x^2) + 2*x*A'(x^2).
RELATED SERIES.
A'(x) = 1/1 + 2*x/1 + x^2/1 + 4*x^3/1 + x^4/1 + 2*x^5/1 + x^6/3 + 8*x^7/1 + x^8/1 + 2*x^9/1 + x^10/5 + 4*x^11/1 + x^12/3 + 2*x^13/3 + x^14/21 + 16*x^15/1 + x^16/1 + 2*x^17/1 + x^18/9 + 4*x^19 + x^20/5 + 2*x^21/5 + x^22/55 + 8*x^23/1 + x^24/3 + 2*x^25/3 + x^26/39 + 4*x^27/3 + x^28/21 + 2*x^29/21 + x^30/315 + 32*x^31/1 + x^32/1 +...
Integral A(x^2) dx = x/1 + x^3/3 + x^5/5 + x^7/21 + x^9/9 + x^11/55 + x^13/39 + x^15/315 + x^17/17 + x^19/171 + x^21/105 + x^23/1265 + x^25/75 + x^27/1053 + x^29/609 + x^31/9765 + x^33/33 + x^35/595 + x^37/333 + x^39/6669 + x^41/205 + x^43/4515 + x^45/2475 + x^47/59455 + x^49/147 + x^51/3825 + x^53/2067 + x^55/57915 + x^57/1197 + x^59/35931 + x^61/19215 + x^63/615195 + x^65/65 +...
Also, we may write the g.f. as the series
A(x) = 1 + x + 2*x^2/2! + 2*x^3/3! + 24*x^4/4! + 24*x^5/5! + 240*x^6/6! + 240*x^7/7! + 40320*x^8/8! + 40320*x^9/9! + 725760*x^10/10! + 725760*x^11/11! + 159667200*x^12/12! + 159667200*x^13/13! + 4151347200*x^14/14! + 4151347200*x^15/15! + 20922789888000*x^16/16! + 20922789888000*x^17/17! + 711374856192000*x^18/18! + 711374856192000*x^19/19! + 486580401635328000*x^20/20! + 486580401635328000*x^21/21! + 20436376868683776000*x^22/22! + 20436376868683776000*x^23/23! +...+ n!/a(n) * x^n/n! +...
The terms at positions 2^n - 1 begin:
[1, 1, 3, 21, 315, 9765, 615195, 78129765, 19923090075, ..., A005329(n), ...].
The terms at positions 3*2^n - 1 begin:
[1, 5, 55, 1265, 59455, 5648225, 1078810975, 413184603425, 316912590826975, ...].
		

Crossrefs

Cf. A005329.

Programs

  • PARI
    {a(n) = my(A=1); for(i=1,#binary(n+1), A = subst(A, x, x^2) + intformal( subst(A, x, x^2) +x*O(x^n)) ); 1/polcoeff(A, n)}
    for(n=0,128,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} x^n/a(n) satisfies:
(1) A'(x) = A(x^2) + 2*x*A'(x^2).
(2) A'(x) = A(x^2) + 2*x*A(x^4) + 4*x^3*A'(x^4).
(3) A'(x) = Sum_{n>=0} 2^n * x^(2^n-1) * A( x^(2^(n+1)) ).
(4) A(x) = 1 + Integral Sum_{n>=0} 2^n * x^(2^n-1) * A( x^(2^(n+1)) ) dx.
O.g.f. G(x) = Sum_{n>=0} a(n)*x^n satisfies:
(1) G(x) = G(x^2) + x * d/dx x*G(x^2).
(2) G(x) = (1+x)*G(x^2) + 2*x^3*G'(x^2).
a(2^n) = 1 for n>=0.
a(k*2^n) = a(k) for n>=0 and k>0.
a(2^n + 1) = 2^n + 1 for n>=1.
a(2^n - 1) = Product_{k=1..n} (2^k - 1) = A005329(n) for n>0.
a(3*2^n - 1) = Product_{k=1..n} (3*2^k - 1) for n>0.
a(m*2^n - 1) = Product_{k=1..n} (m*2^k - 1) for n>0 and positive odd m.
Limit_{n->oo} Sum_{k=0..2^n} 1/(a(k) * a(2^n-k)) = 3.9409369799444642172...

A342186 Triangle read by rows, matrix inverse of A139382.

Original entry on oeis.org

1, -1, 1, 3, -4, 1, -21, 31, -11, 1, 315, -486, 196, -26, 1, -9765, 15381, -6562, 1002, -57, 1, 615195, -978768, 428787, -69688, 4593, -120, 1, -78129765, 124918731, -55434717, 9279163, -652999, 19833, -247, 1
Offset: 1

Views

Author

John Keith, Mar 04 2021

Keywords

Comments

This triangle appears to be the q-analog of A008275 (Stirling numbers of the first kind) for q=2. However, A333142 has a similar definition.
Row sums of unsigned triangle are A006125 with offset 1.
|T(n,k)| is the number of descent free digraphs on [n] containing exactly k source nodes. A descent in a digraph is a pair of vertices s->t such that s>t. A descent free digraph is necessarily acyclic. A source in an acyclic digraph is a node with indegree 0. - Geoffrey Critzer, Mar 05 2025

Examples

			The triangle begins:
           1;
          -1,         1;
           3,        -4,         1;
         -21,        31,       -11,       1;
         315,      -486,       196,     -26,       1;
       -9765,     15381,     -6562,    1002,     -57,     1;
      615195,   -978768,    428787,  -69688,    4593,  -120,    1;
   -78129765, 124918731, -55434717, 9279163, -652999, 19833, -247, 1;
  ...
		

Crossrefs

Cf. A008275, A139382, A333142, A333143, A006125 (row sums).
Columns of unsigned triangle: A005329, A203011, A000295, A203242.

Programs

  • Maple
    A342186 := proc(n, k) if n = 1 and k = 1 then 1 elif k > n or k < 1 then 0 else
    A342186(n-1, k-1) - (2^(n-1) - 1) * A342186(n-1, k) fi end:
    for n from 1 to 8 do seq(A342186(n, k), k = 1..n) od; # Peter Luschny, Jun 28 2022
  • Mathematica
    T[1, 1] := 1; T[n_, k_] := T[n, k] = If[k > n || k < 1, 0, T[n - 1, k - 1] - (2^(n - 1) - 1)*T[n - 1, k]]; Table[T[n, k], {n, 1, 8}, {k, 1, n}] (* after G. C. Greubel's program for A139382 *)
  • PARI
    mat(nn) = my(m = matrix(nn, nn)); for (n=1, nn, for(k=1, nn, m[n,k] = if (n==1, if (k==1, 1, 0), if (k==1, 1, (2^k-1)*m[n-1, k] + m[n-1, k-1])););); m; \\ A139382
    tabl(nn) = 1/mat(nn); \\ Michel Marcus, Mar 18 2021

Formula

T(n,k) = T(n-1,k-1) - (2^(n-1)-1) * T(n-1,k), n, k >= 1, T(1, 1) = 1, T(n, 0) = 0.
For unsigned triangle, T(n, 1) = A005329(n-1); T(n, 2) = A203011(n-1); T(n, n-1) = A000295(n+1); T(n, n-2) = A203242(n-1).
T(n,k) = Sum_{j=k..n} (-1)^(n-j)*2^binomial(n-j,2)*qBinomial(n,j,2)*binomial(j,k), where qBinomial(n,k,2) is A022166(n,k). - Fabian Pereyra, Feb 08 2024

A342245 Number of ordered pairs (S,T) of n X n idempotent matrices over GF(2) such that ST = TS = S.

Original entry on oeis.org

1, 3, 21, 339, 12483, 1074339, 219474243, 107174166147, 126918737362179, 367662330459585027, 2614066808849501254659, 45985259502347910886975491, 2009925824909891218929491103747, 218411680908756813835229484489351171, 59296916710446845619466630380450779971587
Offset: 0

Views

Author

Geoffrey Critzer, Mar 07 2021

Keywords

Comments

The components in the ordered pairs are not necessarily distinct.
The relation S<=T iff ST=TS=S gives a partial ordering on the idempotent matrices enumerated in A132186. Each length k chain (from bottom to top) in the poset corresponds to an ordered direct sum decomposition of GF(2)^n into exactly k subspaces.

Crossrefs

Programs

  • Mathematica
    nn = 13; b[n_] := q^Binomial[n, 2] FunctionExpand[QFactorial[n, q]] /. q -> 2;
    e[x_] := Sum[x^n/b[n], {n, 0,nn}];Table[b[n],{n,0,nn}]CoefficientList[Series[e[x]^3, {x, 0, nn}], x]

Formula

Let E(x) = Sum_{n>=0} x^n/(2^binomial(n,2) * [n]A005329(n).%20Then%20E(x)%5E3%20=%20Sum">2!) where [n]_2! = A005329(n). Then E(x)^3 = Sum{n>=0} a(n)x^n/(2^binomial(n,2) * [n]_2!)

A347485 Irregular triangle read by rows: T(n, k) is the q-multinomial coefficient defined by the k-th partition of n in Abramowitz-Stegun order, evaluated at q = 2.

Original entry on oeis.org

1, 1, 3, 1, 7, 21, 1, 15, 35, 105, 315, 1, 31, 155, 465, 1085, 3255, 9765, 1, 63, 651, 1395, 1953, 9765, 22785, 29295, 68355, 205065, 615195, 1, 127, 2667, 11811, 8001, 82677, 177165, 413385, 248031, 1240155, 2893695, 3720465, 8681085, 26043255, 78129765
Offset: 1

Views

Author

Álvar Ibeas, Sep 03 2021

Keywords

Comments

Abuse of notation: we write T(n, L) for T(n, k), where L is the k-th partition of n in A-St order.
For any permutation (e_1,...,e_r) of the parts of L, T(n, L) is the number of chains of subspaces 0 < V_1 < ··· < V_r = (F_2)^n with dimension increments (e_1,...,e_r).

Examples

			The number of subspace chains 0 < V_1 < V_2 < (F_2)^3 is 21 = T(3, (1, 1, 1)). There are 7 = A022166(3, 1) choices for a one-dimensional subspace V_1 and, for each of them, 3 = A022166(2, 1) extensions to a two-dimensional subspace V_2.
Triangle begins:
  k:  1  2   3   4    5    6    7
      ---------------------------
n=1:  1
n=2:  1  3
n=3:  1  7  21
n=4:  1 15  35 105  315
n=5:  1 31 155 465 1085 3255 9765
		

References

  • R. P. Stanley, Enumerative Combinatorics (vol. 1), Cambridge University Press (1997), Section 1.3.

Crossrefs

Cf. A036038 (q = 1), A022166, A005329 (last entry in each row).

Formula

T(n, (n)) = 1. T(n, L) = A022166(n, e) * T(n - e, L \ {e}), if L is a partition of n and e < n is a part of L.

A381192 Irregular triangle read by rows. Properly color the vertices of a simple labeled graph on [n] using exactly n colors c_1=0, 0<=k<=binomial(n,2).

Original entry on oeis.org

1, 1, 3, 1, 21, 19, 7, 1, 315, 516, 419, 208, 65, 12, 1, 9765, 24186, 31445, 27488, 17538, 8420, 3050, 816, 153, 18, 1, 615195, 2080323, 3769767, 4754751, 4592847, 3555479, 2257723, 1188595, 519745, 187705, 55237, 12941, 2325, 301, 25, 1
Offset: 0

Views

Author

Geoffrey Critzer, Feb 16 2025

Keywords

Comments

A descent in a labeled directed graph is an edge s->t such that s>t.
T(n,0) = A005329(n).
Sum_{k>=0} T(n,k)*k = A005329(n)*n(n-1)/8.

Examples

			     1;
     1;
     3,     1;
    21,    19,     7,     1;
   315,   516,   419,   208,    65,   12,   1;
  9765, 24186, 31445, 27488, 17538, 8420, 3050, 816, 153, 18, 1;
  ...
		

Crossrefs

CF. A005329, A381058, A011266 (row sums), A381102.

Programs

  • Mathematica
    nn = 6; B[n_] :=FunctionExpand[QFactorial[n, (1 + u y)/(1 + y)]] (1 + y)^Binomial[n, 2]; e[z_] := Sum[z^n/B[n], {n, 0, nn}];Map[CoefficientList[#, u] &,Table[B[n], {n, 0, nn}] CoefficientList[Series[1/(1 - z), {z, 0, nn}], z] /. y -> 1] // Grid
Previous Showing 51-60 of 80 results. Next