cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A118346 Central terms of pendular triangle A118345.

Original entry on oeis.org

1, 1, 5, 30, 201, 1445, 10900, 85128, 682505, 5585115, 46461437, 391743850, 3340361700, 28755475180, 249572076200, 2181469638880, 19186562661273, 169677521094215, 1507881643936015, 13458730170115778, 120599648894147185
Offset: 0

Views

Author

Paul D. Hanna, Apr 26 2006

Keywords

Comments

Also, g.f. A(x) = (1/x)*series_reversion of x/(1 + x*GF(A005572)), where GF(A005572) is the g.f. of A005572, which is the number of walks on cubic lattice starting and finishing on the xy plane and never going below it.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    [1] cat Coefficients(R!( Reversion( x/((1+x)*(1+4*x+x^2)) ) )); // G. C. Greubel, Mar 17 2021
  • Mathematica
    CoefficientList[1 +InverseSeries[Series[x/((1+x)*(1+4*x+x^2)), {x,0,30}]], x] (* G. C. Greubel, Mar 17 2021 *)
  • PARI
    {a(n) = polcoeff(serreverse( x*(1-2*x+sqrt((1-2*x)*(1-6*x)+x*O(x^n)))/(2*(1-2*x)))/x, n)}
    
  • Sage
    def A118346_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( ( x/((1+x)*(1+4*x+x^2)) ).reverse() ).list()
    a=A118346_list(31); [1]+a[1:] # G. C. Greubel, Mar 17 2021
    

Formula

G.f.: A=A(x) satisfies A = 1 - 2*x*A + 2*x*A^2 + x*A^3.
G.f.: A(x) = 1 + series_reversion( x/((1+x)*(1+4*x+x^2)) ).
G.f.: A(x) = (1/x)*series_reversion( x*(1-2*x + sqrt((1-2*x)*(1-6*x)))/(2*(1-2*x)) ).
For n>0: a(n) = (1/n)*Sum_{j=0..n} Sum_{i=0..n-1} ( binomial(n,j) * binomial(j,i) * binomial(n-j,2*j-n-i-1) * 5^(2*n-3*j+2*i+1) ). -Vladimir Kruchinin, Dec 26 2010

A247495 Generalized Motzkin numbers: Square array read by descending antidiagonals, T(n, k) = k!*[x^k](exp(n*x)* BesselI_{1}(2*x)/x), n>=0, k>=0.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 0, 2, 2, 1, 2, 4, 5, 3, 1, 0, 9, 14, 10, 4, 1, 5, 21, 42, 36, 17, 5, 1, 0, 51, 132, 137, 76, 26, 6, 1, 14, 127, 429, 543, 354, 140, 37, 7, 1, 0, 323, 1430, 2219, 1704, 777, 234, 50, 8, 1, 42, 835, 4862, 9285, 8421, 4425, 1514, 364, 65, 9, 1
Offset: 0

Views

Author

Peter Luschny, Dec 11 2014

Keywords

Comments

This two-dimensional array of numbers can be seen as a generalization of the Motzkin numbers A001006 for two reasons: The case n=1 reduces to the Motzkin numbers and the columns are the values of the Motzkin polynomials M_{k}(x) = sum_{j=0..k} A097610(k,j)*x^j evaluated at the nonnegative integers.

Examples

			Square array starts:
[n\k][0][1] [2]  [3]   [4]   [5]    [6]     [7]      [8]
[0]   1, 0,  1,   0,    2,    0,     5,      0,      14, ...  A126120
[1]   1, 1,  2,   4,    9,   21,    51,    127,     323, ...  A001006
[2]   1, 2,  5,  14,   42,  132,   429,   1430,    4862, ...  A000108
[3]   1, 3, 10,  36,  137,  543,  2219,   9285,   39587, ...  A002212
[4]   1, 4, 17,  76,  354, 1704,  8421,  42508,  218318, ...  A005572
[5]   1, 5, 26, 140,  777, 4425, 25755, 152675,  919139, ...  A182401
[6]   1, 6, 37, 234, 1514, 9996, 67181, 458562, 3172478, ...  A025230
A000012,A001477,A002522,A079908, ...
.
Triangular array starts:
              1,
             0, 1,
           1, 1, 1,
          0, 2, 2, 1,
        2, 4, 5, 3, 1,
      0, 9, 14, 10, 4, 1,
   5, 21, 42, 36, 17, 5, 1,
0, 51, 132, 137, 76, 26, 6, 1.
		

Crossrefs

Programs

  • Maple
    # RECURRENCE
    T := proc(n,k) option remember; if k=0 then 1 elif k=1 then n else
    (n*(2*k+1)*T(n,k-1)-(n-2)*(n+2)*(k-1)*T(n,k-2))/(k+2) fi end:
    seq(print(seq(T(n,k),k=0..9)),n=0..6);
    # OGF (row)
    ogf := n -> (1-n*x-sqrt(((n-2)*x-1)*((n+2)*x-1)))/(2*x^2):
    seq(print(seq(coeff(series(ogf(n),x,12),x,k),k=0..9)),n=0..6);
    # EGF (row)
    egf := n -> exp(n*x)*hypergeom([],[2],x^2):
    seq(print(seq(k!*coeff(series(egf(n),x,k+2),x,k),k=0..9)),n=0..6);
    # MOTZKIN polynomial (column)
    A097610 := proc(n,k) if type(n-k,odd) then 0 else n!/(k!*((n-k)/2)!^2* ((n-k)/2+1)) fi end: M := (k,x) -> add(A097610(k,j)*x^j,j=0..k):
    seq(print(seq(M(k,n),n=0..9)),k=0..6);
    # OGF (column)
    col := proc(n, len) local G; G := A247497_row(n); (-1)^(n+1)* add(G[k+1]/(x-1)^(k+1), k=0..n); seq(coeff(series(%, x, len+1),x,j), j=0..len) end: seq(print(col(n,8)), n=0..6); # Peter Luschny, Dec 14 2014
  • Mathematica
    T[0, k_] := If[EvenQ[k], CatalanNumber[k/2], 0];
    T[n_, k_] := n^k*Hypergeometric2F1[(1 - k)/2, -k/2, 2, 4/n^2];
    Table[T[n - k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 03 2017 *)
  • Sage
    def A247495(n,k):
        if n==0: return(k//2+1)*factorial(k)/factorial(k//2+1)^2 if is_even(k) else 0
        return n^k*hypergeometric([(1-k)/2,-k/2],[2],4/n^2).simplify()
    for n in (0..7): print([A247495(n,k) for k in range(11)])

Formula

T(n,k) = (n*(2*k+1)*T(n,k-1)-(n-2)*(n+2)*(k-1)*T(n,k-2))/(k+2) for k>=2.
T(n,k) = Sum_{j=0..floor(k/2)} n^(k-2*j)*binomial(k,2*j)*binomial(2*j,j)/(j+1).
T(n,k) = n^k*hypergeom([(1-k)/2,-k/2], [2], 4/n^2) for n>0.
T(n,n) = A247496(n).
O.g.f. for row n: (1-n*x-sqrt(((n-2)*x-1)*((n+2)*x-1)))/(2*x^2).
O.g.f. for row n: R(x)/x where R(x) is series reversion of x/(1+n*x+x^2).
E.g.f. for row n: exp(n*x)*hypergeom([],[2],x^2).
O.g.f. for column k: the k-th column consists of the values of the k-th Motzkin polynomial M_{k}(x) evaluated at x = 0,1,2,...; M_{k}(x) = sum_{j=0..k} A097610(k,j)*x^j = sum_{j=0..k} (-1)^j*binomial(k,j)*A001006(j)*(x+1)^(k-j).
O.g.f. for column k: sum_{j=0..k} (-1)^(k+1)*A247497(k,j)/(x-1)^(j+1). - Peter Luschny, Dec 14 2014
O.g.f. for row n: 1/(1 - n*x - x^2/(1 - n*x - x^2/(1 - n*x - x^2/(1 - n*x - x^2/(1 - ...))))), a continued fraction. - Ilya Gutkovskiy, Sep 21 2017
T(n,k) is the coefficient of x^k in the expansion of 1/(k+1) * (1 + n*x + x^2)^(k+1). - Seiichi Manyama, May 07 2019

A385728 Expansion of 1/((1-2*x) * (1-6*x))^(3/2).

Original entry on oeis.org

1, 12, 102, 760, 5310, 35784, 235788, 1530288, 9824310, 62557000, 395797908, 2491381776, 15616141996, 97537784400, 607391245080, 3772617319008, 23379854507046, 144605546475336, 892834113930180, 5504041611527760, 33883431379007364, 208327771987901808
Offset: 0

Views

Author

Seiichi Manyama, Aug 19 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 34); f := 1 / ((1 - 2*x) * (1 - 6*x))^(3/2); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 22 2025
  • Mathematica
    Module[{a, n}, RecurrenceTable[{a[n] == ((8*n+4)*a[n-1] - 12*(n+1)*a[n-2])/n, a[0] == 1, a[1] == 12}, a, {n, 0, 25}]] (* Paolo Xausa, Aug 21 2025 *)
    CoefficientList[Series[ 1/((1-2*x)*(1-6*x))^(3/2),{x,0,33}],x] (* Vincenzo Librandi, Aug 22 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/((1-2*x)*(1-6*x))^(3/2))
    

Formula

n*a(n) = (8*n+4)*a(n-1) - 12*(n+1)*a(n-2) for n > 1.
a(n) = (1/2)^n * Sum_{k=0..n} 3^k * (2*k+1) * (2*(n-k)+1) * binomial(2*k,k) * binomial(2*(n-k),n-k).
a(n) = Sum_{k=0..n} 2^(n-k) * (2*k+1) * binomial(2*k,k) * binomial(n+2,n-k).
a(n) = Sum_{k=0..n} (-1)^k * 6^(n-k) * (2*k+1) * binomial(2*k,k) * binomial(n+2,n-k).
a(n) = binomial(n+2,2) * A005572(n).
a(n) = ((n+2)/2) * Sum_{k=0..floor(n/2)} 4^(n-2*k) * binomial(n+1,n-2*k) * binomial(2*k+1,k).
a(n) = Sum_{k=0..n} 2^k * (-3/2)^(n-k) * (2*k+1) * binomial(2*k,k) * binomial(k,n-k).
a(n) ~ sqrt(n) * 2^(n - 1/2) * 3^(n + 3/2) / sqrt(Pi). - Vaclav Kotesovec, Aug 21 2025

A052177 Number of walks on simple cubic lattice (starting on the xy plane, never going below it and finishing a height 1 above it).

Original entry on oeis.org

0, 1, 8, 50, 288, 1605, 8824, 48286, 264128, 1447338, 7953040, 43842788, 242507456, 1345868589, 7493458392, 41850173670, 234408444288, 1316541032958, 7413214297968, 41842633282620, 236703844320960
Offset: 0

Views

Author

N. J. A. Sloane, Jan 26 2000

Keywords

Programs

  • Mathematica
    Flatten[{0,RecurrenceTable[{(n-1)*(n+3)*a[n] == 4*n*(2*n+1)*a[n-1] - 12*(n-1)*n*a[n-2],a[1]==1,a[2]==8},a,{n,20}]}] (* Vaclav Kotesovec, Oct 08 2012 *)

Formula

a(n) = 4*a(n-1)+A005572(n-1)+A052178(n-1) = A052179(n, 1) = Sum_{j=0..ceiling((n-1)/2)} 4^(n-2j-1)*binomial(n, 2j+1)*binomial(2j+2, j+1)/(j+2).
Recurrence: (n-1)*(n+3)*a(n) = 4*n*(2*n+1)*a(n-1) - 12*(n-1)*n*a(n-2). - Vaclav Kotesovec, Oct 08 2012
a(n) ~ 6^(n+3/2)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 08 2012
G.f.: (1 - 4*x - sqrt(1-8*x+12*x^2))^2/(4*x^3). - Mark van Hoeij, May 16 2013

Extensions

More terms and formula from Henry Bottomley, Aug 23 2001

A171568 Riordan array (f(x), x*f(x)) where f(x) is the g.f. of A064613.

Original entry on oeis.org

1, 3, 1, 10, 6, 1, 37, 29, 9, 1, 150, 134, 57, 12, 1, 654, 622, 318, 94, 15, 1, 3012, 2948, 1686, 616, 140, 18, 1, 14445, 14317, 8781, 3693, 1055, 195, 21, 1, 71398, 71142, 45625, 21132, 7075, 1662, 259, 24, 1, 361114, 360602, 238170, 118042, 44303, 12345, 2464, 332, 27, 1
Offset: 0

Views

Author

Philippe Deléham, Dec 11 2009

Keywords

Comments

Equal to A171515*B = B*A104259, B = A007318.

Examples

			Triangle T(n,k) begins
[0]     1;
[1]     3,     1;
[2]    10,     6,     1;
[3]    37,    29,     9,     1;
[4]   150,   134,    57,    12,    1;
[5]   654,   622,   318,    94,   15,    1;
[6]  3012,  2948,  1686,   616,  140,   18,   1;
[7] 14445, 14317,  8781,  3693, 1055,  195,  21,  1;
[8] 71398, 71142, 45625, 21132, 7075, 1662, 259, 24, 1;
.
Production array begins
  3, 1
  1, 3, 1
  1, 1, 3, 1
  1, 1, 1, 3, 1
  1, 1, 1, 1, 3, 1
  1, 1, 1, 1, 1, 3, 1
- _Philippe Deléham_, Mar 05 2013
		

Crossrefs

Sum_{k=0..n} T(n,k)*x^k = A033543(n), A064613(n), A005572(n), A005573(n) for x = -1, 0, 1, 2 respectively.

Programs

  • Maple
    T := proc(n,k) option remember;
    if n < 0 or k < 0 then 0 elif n = k then 1 else
    T(n-1, k-1) + 3*T(n-1,k) + add(T(n-1, k+1+i), i=0..n) fi end:
    for n from 0 to 8 do seq(T(n,k), k = 0..n) od; # Peter Luschny, Oct 16 2022
  • Mathematica
    T[n_, k_] := T[n, k] = If[n < 0 || k < 0, 0, If[n == k, 1, T[n-1, k-1] + 3*T[n-1, k] + Sum[T[n-1, k+1+i], {i, 0, n}]]];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 23 2024, after Peter Luschny *)

Formula

T(n, 0) - T(n, 1) = 2^n.
T(n, k) = T(n-1, k-1) + 3*T(n-1, k) + Sum_{i=0..n} T(n-1, k+1+i). - Philippe Deléham, Feb 23 2012

Extensions

Corrected and extended by Peter Luschny, Oct 16 2022

A302181 Number of 3D walks of type abb.

Original entry on oeis.org

1, 5, 62, 1065, 21714, 492366, 12004740, 308559537, 8255788970, 227976044010, 6457854821340, 186814834574550, 5500292590186380, 164387681345290500, 4976887208815547640, 152378485941172462785, 4711642301137121933850, 146964278352052950118770, 4619875954522866283392300
Offset: 0

Views

Author

N. J. A. Sloane, Apr 09 2018

Keywords

Comments

See Dershowitz (2017) for precise definition.

Crossrefs

Programs

  • Maple
    C := n-> binomial(2*n, n)/(n+1): # Catalan numbers
    A302181 := n-> add(binomial(2*n, k)*C(iquo(k+1, 2))*C(iquo(k, 2))*(2*iquo(k, 2)+1)*add((-1)^(k+j)*binomial(2*n-k, iquo(j,2)), j=0..2*n-k), k=0..2*n): seq(A302181(n), n = 0 .. 18); # Mélika Tebni, Nov 06 2024

Formula

a(n) = Sum_{k=0..2*n} binomial(2*n, k) * A005558(k) * A126869(2*n-k). - Mélika Tebni, Nov 06 2024

Extensions

a(8)-a(18) from Nachum Dershowitz, Aug 03 2020

A349318 G.f. A(x) satisfies: A(x) = 1 + x * A(x)^3 / (1 - 2 * x).

Original entry on oeis.org

1, 1, 5, 28, 171, 1113, 7590, 53588, 388519, 2876003, 21648065, 165193576, 1275043280, 9936953788, 78087083456, 618049278976, 4922606097263, 39425205882007, 317316076325015, 2565216211152700, 20819872339143179, 169586043613302169, 1385856599443533442
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 21 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; A[] = 0; Do[A[x] = 1 + x A[x]^3/(1 - 2 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = a[1] = 1; a[n_] := a[n] = 2 a[n - 1] + Sum[Sum[a[i] a[j] a[n - i - j - 1], {j, 0, n - i - 1}], {i, 0, n - 1}]; Table[a[n], {n, 0, 22}]
    Table[Sum[Binomial[n - 1, k - 1] Binomial[3 k, k] 2^(n - k)/(2 k + 1), {k, 0, n}], {n, 0, 22}]

Formula

a(0) = a(1) = 1; a(n) = 2 * a(n-1) + Sum_{i=0..n-1} Sum_{j=0..n-i-1} a(i) * a(j) * a(n-i-j-1).
a(n) = Sum_{k=0..n} binomial(n-1,k-1) * binomial(3*k,k) * 2^(n-k) / (2*k+1).
a(n) ~ 35^(n + 1/2) / (3 * sqrt(Pi) * n^(3/2) * 2^(2*n + 2)). - Vaclav Kotesovec, Nov 25 2021

A171515 Riordan array (f(x), x*f(x)) where f(x) is the g.f. of A033543.

Original entry on oeis.org

1, 2, 1, 5, 4, 1, 16, 14, 6, 1, 62, 52, 27, 8, 1, 270, 213, 116, 44, 10, 1, 1257, 948, 513, 216, 65, 12, 1, 6096, 4470, 2376, 1038, 360, 90, 14, 1, 30398, 21904, 11468, 5056, 1880, 556, 119, 16, 1
Offset: 0

Views

Author

Philippe Deléham, Dec 10 2009

Keywords

Comments

Equal to B^2*A039598*B^(-2), B = A007318.

Examples

			Triangle begins : 1 ; 2,1 : 5,4,1 ; 16,14,6,1 ; 62,52,27,8,1 ; ...
		

Crossrefs

Formula

Sum_{k, 0<=k<=n} T(n,k)*x^k = A033543(n), A064613(n), A005572(n), A005573(n) for x = 0, 1, 2, 3 respectively.
T(n,k) = T(n-1,k-1) + 2*T(n-1,k) + sum_{i, i>=0} T(n-1,k+1+i)*2^i. - Philippe Deléham, Feb 23 2012

A272867 Triangle read by rows, T(n,k) = GegenbauerC(m,-n,-2) where m = k if k=0 and 0<=k<=2n.

Original entry on oeis.org

1, 1, 4, 1, 1, 8, 18, 8, 1, 1, 12, 51, 88, 51, 12, 1, 1, 16, 100, 304, 454, 304, 100, 16, 1, 1, 20, 165, 720, 1770, 2424, 1770, 720, 165, 20, 1, 1, 24, 246, 1400, 4815, 10224, 13236, 10224, 4815, 1400, 246, 24, 1
Offset: 0

Views

Author

Peter Luschny, May 08 2016

Keywords

Examples

			                                  1;
                            1,    4,  1;
                         1, 8,   18,  8, 1;
                    1, 12, 51,   88,  51, 12, 1;
              1, 16, 100, 304,  454,  304, 100, 16, 1;
        1, 20, 165, 720, 1770, 2424,  1770, 720, 165, 20, 1;
1, 24, 246, 1400, 4815, 10224, 13236, 10224, 4815, 1400, 246, 24, 1;
		

Crossrefs

Programs

  • Maple
    T := (n,k) -> simplify(GegenbauerC(`if`(k
    				
  • Mathematica
    T[n_, k_]:=If[n<1, 1, If[kIndranil Ghosh, Apr 03 2017 *)

Formula

T(n,n) = A081671(n) for n>=0.
T(n+1,n+2)/(n+1) = A005572(n) for n>=0.

A302180 Number of 3D walks of type aad.

Original entry on oeis.org

1, 1, 3, 7, 23, 71, 251, 883, 3305, 12505, 48895, 193755, 783355, 3205931, 13302329, 55764413, 236174933, 1008773269, 4343533967, 18834033443, 82201462251, 360883031291, 1592993944723, 7066748314147, 31493800133173, 140953938878821, 633354801073571, 2856369029213263
Offset: 0

Views

Author

N. J. A. Sloane, Apr 09 2018

Keywords

Comments

See Dershowitz (2017) for precise definition.
Number of 3D walks of length n in the first octant using steps (1, 1, 0), (1, -1, 0), (1, 0, 1), (1, 0, -1) and (1, 0, 0) that start at the origin and end at (n, 0, 0). The analogous problem in 2D is given by the Motzkin numbers A001006. - Farzan Byramji, Mar 06 2021
Inverse binomial transform of A145867 (Number of 3D walks of type aae). - Mélika Tebni, Nov 05 2024

Crossrefs

Programs

  • Maple
    M := n-> add(binomial(n, 2*k)*binomial(2*k, k)/(k+1), k = 0 .. iquo(n,2)): # Motzkin numbers
    A302180 := n-> add((-1)^(n-k)*binomial(n, k)*add(binomial(k, j)*M(j)*M(k-j), j=0..k), k=0..n):  seq(A302180(n), n = 0 .. 26); # Mélika Tebni, Nov 05 2024

Extensions

a(14)-a(26) from Farzan Byramji, Mar 06 2021
Previous Showing 11-20 of 30 results. Next