cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A129936 a(n) = (n-2)*(n+3)*(n+2)/6.

Original entry on oeis.org

-2, -2, 0, 5, 14, 28, 48, 75, 110, 154, 208, 273, 350, 440, 544, 663, 798, 950, 1120, 1309, 1518, 1748, 2000, 2275, 2574, 2898, 3248, 3625, 4030, 4464, 4928, 5423, 5950, 6510, 7104, 7733, 8398, 9100, 9840, 10619, 11438, 12298, 13200, 14145, 15134, 16168, 17248
Offset: 0

Views

Author

Roger L. Bagula, Jun 09 2007

Keywords

Comments

Essentially the same as A005586.

Crossrefs

Programs

  • Maple
    seq(sum(i*(k-i+1), i=1..k+2), k=0..99); # Wesley Ivan Hurt, Sep 21 2013
  • Mathematica
    f[n_] = Binomial[n + 3, 3] - (n + 3)*(n + 2)/2; Table[f[n], {n, 0, 30}]
    LinearRecurrence[{4,-6,4,-1},{-2,-2,0,5},50] (* Harvey P. Dale, Jul 03 2020 *)
  • PARI
    a(n)=(n-2)*(n+3)*(n+2)/6 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = binomial(n+3,3) - (n + 3)*(n + 2)/2.
a(n) = A214292(n+2,2). - Reinhard Zumkeller, Jul 12 2012
G.f.: (x^3-4*x^2+6*x-2)/(x-1)^4. - Colin Barker, Sep 05 2012
From Wesley Ivan Hurt, Sep 21 2013: (Start)
a(n) = Sum_{i=1..n+2} i*(n-i+1).
a(n+2) = A000292(n+1) + A034856(n), n>0. (End)
From Amiram Eldar, Sep 26 2022: (Start)
Sum_{n>=3} 1/a(n) = 77/200.
Sum_{n>=3} (-1)^(n+1)/a(n) = 363/200 - 12*log(2)/5. (End)
From Elmo R. Oliveira, Aug 04 2025: (Start)
E.g.f.: exp(x)*(x^3 + 6*x^2 - 12)/6.
a(n) = A023444(n)*A002378(n+2)/6.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)

Extensions

More terms from Wesley Ivan Hurt, Sep 21 2013

A192174 Triangle T(n,k) of the coefficients [x^(n-k)] of the polynomial p(0,x)=-1, p(1,x)=x and p(n,x) = x*p(n-1,x) - p(n-2,x) in row n, column k.

Original entry on oeis.org

-1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, -1, 0, -1, 1, 0, -2, 0, -1, 0, 1, 0, -3, 0, 0, 0, 1, 1, 0, -4, 0, 2, 0, 2, 0, 1, 0, -5, 0, 5, 0, 2, 0, -1, 1, 0, -6, 0, 9, 0, 0, 0, -3, 0, 1, 0, -7, 0, 14, 0, -5, 0, -5, 0, 1, 1, 0, -8, 0, 20, 0, -14, 0, -5, 0, 4, 0
Offset: 0

Views

Author

Paul Curtz, Jun 24 2011

Keywords

Comments

Consider the Catalan triangle A009766 antisymmetrically extended by a mirror along the diagonal (see also A176239):
0, -1, -1, -1, -1, -1, -1, -1,
1, 0, -1, -2, -3, -4, -5, -6,
1, 1, 0, -2, -5, -9, -14, -20,
1, 2, 2, 0, -5, -14, -28, -48,
1, 3, 5, 5, 0, -14, -42, -90,
1, 4, 9, 14, 14, 0, -42, -132,
1, 5, 14, 28, 42, 42, 0, -132,
1, 6, 20, 48, 90, 132, 132, 0.
The rows in this array are essentially the columns of T(n,k).

Examples

			Triangle begins
  -1;      # -1
   1,  0;      # x
   1,  0,  1;      # x^2+1
   1,  0,  0,  0;      # x^3
   1,  0, -1,  0, -1;      # x^4-x^2-1
   1,  0, -2,  0, -1,  0;
   1,  0, -3,  0,  0,  0,  1;
   1,  0, -4,  0,  2,  0,  2,  0;
   1,  0, -5,  0,  5,  0,  2,  0, -1;
   1,  0, -6,  0,  9,  0,  0,  0, -3,  0;
   1,  0, -7,  0, 14,  0, -5,  0, -5,  0,  1;
   1,  0, -8,  0, 20,  0,-14,  0, -5,  0,  4,  0;
   1,  0, -9,  0, 27,  0,-28,  0,  0,  0,  9,  0, -1;
		

Crossrefs

Cf. A194084. - Paul Curtz, Aug 16 2011

Programs

  • Maple
    p:= proc(n,x) option remember: if n=0 then -1 elif n=1 then x elif n>=2 then x*procname(n-1,x)-procname(n-2,x) fi: end: A192174 := proc(n,k): coeff(p(n,x),x,n-k): end: seq(seq(A192174(n,k),k=0..n), n=0..11); # Johannes W. Meijer, Aug 21 2011

Formula

Sum_{k=0..n} T(n,k) = A057079(n-1).
Apparently T(3s,2s-2) = (-1)^(s+1)*A000245(s), s >= 1.

A205574 Triangle T(n,k), 0<=k<=n, given by (0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 5, 3, 1, 0, 15, 14, 9, 4, 1, 0, 52, 44, 28, 14, 5, 1, 0, 203, 154, 93, 48, 20, 6, 1, 0, 877, 595, 333, 169, 75, 27, 7, 1, 0, 4140, 2518, 1289, 624, 280, 110, 35, 8, 1, 0, 21147, 11591, 5394, 2442, 1071, 435, 154, 44, 9, 1
Offset: 0

Views

Author

Philippe Deléham, Jan 29 2012

Keywords

Comments

Bell convolution triangle ; g.f. for column k : (x*B(x))^k with B(x) g.f. for A000110 (Bell numbers).
Riordan array (1, x*B(x)), when B(x) the g.f. of A000110.
Row sums are in A137551.

Examples

			Triangle begins:
  1;
  0,   1;
  0,   1,   1;
  0,   2,   2,  1;
  0,   5,   5,  3,  1;
  0,  15,  14,  9,  4,  1;
  0,  52,  44, 28, 14,  5, 1;
  0, 203, 154, 93, 48, 20, 6, 1;
  ...
		

Crossrefs

Cf. Columns : A000007, A000110, A014322, A014323, A014325 ; Diagonals : A000012, A001477, A000096, A005586.
Another version: A292870.
T(2n,n) gives: A292871.

Programs

  • Maple
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> combinat:-bell(n-1)); # Peter Luschny, Oct 19 2022

Formula

Sum_{k=0..n} T(n,k) = A137551(n), n>0.

A024191 [ (3rd elementary symmetric function of 3,4,...,n+4)/(3+4+...+n+4) ].

Original entry on oeis.org

5, 19, 47, 95, 170, 280, 434, 642, 915, 1265, 1705, 2249, 2912, 3710, 4660, 5780, 7089, 8607, 10355, 12355, 14630, 17204, 20102, 23350, 26975, 31005, 35469, 40397, 45820, 51770, 58280, 65384, 73117, 81515, 90615, 100455, 111074, 122512, 134810, 148010
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A115127.
Partial sums of A005586.

Programs

  • Mathematica
    Table[n(n+1)(n^2+13n+46)/24,{n,40}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{5,19,47,95,170},40] (* Harvey P. Dale, Apr 28 2014 *)
    CoefficientList[Series[(5 - 6 x + 2 x^2)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Apr 28 2014 *)
  • PARI
    a(n) = n*(n+1)*(n^2+13*n+46)/24 \\ Charles R Greathouse IV, Oct 21 2022

Formula

a(n)=A115127(n+2, 3), n>=2.
a(n) = n*(n+1)*(n^2+13n+46)/24 =a(n-1)+A005586(n). - Henry Bottomley, Oct 25 2001
G.f.: x*(5-6*x+2*x^2)/(1-x)^5.
a(n) = floor(A024184(n)/A055998(n+2)). - R. J. Mathar, Sep 15 2009
a(1)=5, a(2)=19, a(3)=47, a(4)=95, a(5)=170, a(n)=5*a(n-1)- 10*a(n-2)+ 10*a(n-3)-5*a(n-4)+a(n-5). - Harvey P. Dale, Apr 28 2014

A176239 Shifted signed Catalan triangle T(n,k) = (-1)^*(n+k+1)*A009766(n,k-n+1) read by rows.

Original entry on oeis.org

0, -1, 1, -1, 0, 2, 0, 1, -2, 2, 0, -5, 0, 0, 1, -3, 5, -5, 0, 14, 0, 0, 0, 1, -4, 9, -14, 14, 0, -42, 0, 0, 0, 0, 1, -5, 14, -28, 42, -42, 0, 132, 0, 0, 0, 0, 0, 1, -6, 20, -48, 90, -132, 132, 0, -429, 0, 0, 0, 0, 0, 0, 1, -7, 27, -75, 165, -297, 429, -429, 0, 1430
Offset: 0

Views

Author

Paul Curtz, Apr 12 2010

Keywords

Examples

			The triangle starts in row n=0 with columns 0 <= k < 2*(n+1) as:
0,-1;                          (-1)^k*k  A001477
1,-1,.0,.2;                      (-1)^(k+1)*(k+1)*(k-2)/2  A080956, A000096
0,.1,-2,.2,.0,-5;                 (-1)^n*k*(k+1)*(k-4)/6 A129936, A005586
0,.0,.1,-3,.5,-5,..0,.14;             (-1)^k*k*(k+1)*(k-1)*(k-6)/24, A005587
0,.0,.0,.1,-4,.9,-14,.14,.0,-42;           A005557, A034807
0,.0,.0,.0,.1,-5,.14,-28,42,-42,0,132;
		

Crossrefs

Programs

  • Maple
    A009766 := proc(n,k) if k<0 or k >n then 0; else binomial(n+k,n)*(n-k+1)/(n+1) ; end if; end proc:
    A000108 := proc(n) binomial(2*n,n)/(n+1) ; end proc:
    A176239 := proc(n,k) if k <= 2*n-1 then (-1)^(n+k+1)*A009766(n,k-n+1) elif k = 2*n then 0; elif k < 2*(n+1) then (-1)^(n+1)*A000108(n+1); else 0; end if; end proc: # R. J. Mathar, Dec 03 2010

Formula

T(n,k) = T(n+1,k)+T(n+1,k+1), k <= 2n+1.
T(n,2n) = 0.
T(n,2n+1) = (-1)^(n+1)*A000108(n+1).
T(n,k) = (-1)^(n+k+1)*A009766(n,k-n+1), k < 2n.

A212393 Expansion of (1-4*x+7*x^2-5*x^3+4*x^4-6*x^5+21*x^6+18*x^7-5*x^8)/(1-x)^5.

Original entry on oeis.org

1, 1, 2, 5, 14, 30, 72, 195, 485, 1059, 2065, 3682, 6120, 9620, 14454, 20925, 29367, 40145, 53655, 70324, 90610, 115002, 144020, 178215, 218169, 264495, 317837, 378870, 448300, 526864, 615330, 714497, 825195, 948285, 1084659, 1235240, 1400982, 1582870, 1781920
Offset: 0

Views

Author

Bruno Berselli, May 14 2012

Keywords

Comments

In the paper of Kitaev, Remmel and Tiefenbruck (see the Links section), Q_(132)^(0,k,0,0)(x,0) represents a generating function depending on k and x.
For successive values of k we have:
k=1, the g.f. of A000012: 1/(1-x);
k=2, the g.f. of A028310: (1-x+x^2)/(1-x)^2;
k=3, the g.f. (1-2*x+2*x^2+x^3-x^4)/(1-x)^3, whose coefficients (except the first two) are given by A000096 (for n>0);
k=4, the g.f. (1-3*x+4*x^2-x^3+3*x^4-5*x^5+2*x^6)/(1-x)^4, whose coefficients (except the first three) are given by A005586 (for n>0).
This sequence corresponds to the case k=5.

Programs

  • Magma
    m:=39; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-4*x+7*x^2-5*x^3+4*x^4-6*x^5+21*x^6+18*x^7-5*x^8)/(1-x)^5));
  • Mathematica
    CoefficientList[Series[(1 - 4 x + 7 x^2 - 5 x^3 + 4 x^4 - 6 x^5 + 21 x^6 + 18 x^7 - 5 x^8)/(1 - x)^5, {x, 0, 38}], x]
  • PARI
    Vec((1-4*x+7*x^2-5*x^3+4*x^4-6*x^5+21*x^6+18*x^7-5*x^8)/(1-x)^5+O(x^39))
    

Formula

G.f.: (1-4*x+7*x^2-5*x^3+4*x^4-6*x^5+21*x^6+18*x^7-5*x^8)/(1-x)^5.
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5) for n>8, a(0)=a(1)=1, a(2)=2, a(3)=5, a(4)=14, a(5)=30, a(6)=72, a(7)=195, a(8)=485.
a(n) = (n-3)*(31*n^3-369*n^2+1454*n-1560)/24 for n>3, a(0)=a(1)=1, a(2)=2, a(3)=5.
G.f.: 1+x+2*x^2+5*x^3 + 14*x^4*G(0), where G(k)= 1 + x*(k+1)*(124*k^3+192*k^2+89*k+180)/( (2*k+1)*(62*k^3+3*k^2-5*k+84) - x*(2*k+1)*(62*k^3+3*k^2-5*k+84)*(2*k+3)*(62*k^3+189*k^2+187*k+144)/(x*(2*k+3)*(62*k^3+189*k^2+187*k+144) + (k+1)*(124*k^3+192*k^2+89*k+180)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 06 2013

A254749 1-gonal pyramidal numbers.

Original entry on oeis.org

1, 2, 2, 0, -5, -14, -28, -48, -75, -110, -154, -208, -273, -350, -440, -544, -663, -798, -950, -1120, -1309, -1518, -1748, -2000, -2275, -2574, -2898, -3248, -3625, -4030, -4464, -4928, -5423, -5950, -6510, -7104, -7733, -8398, -9100, -9840, -10619, -11438
Offset: 1

Views

Author

Colin Barker, Feb 07 2015

Keywords

Comments

Not strictly pyramidal numbers, but the result of using the Wikipedia formula with r = 1.
Essentially the same as A129936 and A005586.

Examples

			G.f. = x + 2*x^2 + 2*x^3 - 5*x^5 - 14*x^6 - 28*x^7 - 48*x^8 - 75*x^9 + ...
		

Crossrefs

Programs

  • Magma
    [(n*(4+3*n-n^2))/6: n in [1..60]]; // G. C. Greubel, Aug 03 2018
  • Mathematica
    Table[(n*(4+3*n-n^2))/6, {n,1,60}] (* or *) LinearRecurrence[{4,-6,4,-1}, {1, 2, 2, 0}, 60] (* G. C. Greubel, Aug 03 2018 *)
  • PARI
    ppg(r, n) = (3*n^2+n^3*(r-2)-n*(r-5))/6
    vector(100, n, ppg(1, n))
    

Formula

a(n) = n*(4 + 3*n - n^2)/6.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: x*(1 - 2*x)/(x-1)^4.
a(n) = A005581(-n) = -A005586(n-4) = -A129936(n-2) for all n in Z. - Michael Somos, Jul 28 2015
E.g.f.: -exp(x)*x*(x^2 - 6)/6. - Elmo R. Oliveira, Aug 04 2025

A115126 First (k=1) triangle of numbers related to totally asymmetric exclusion process (case alpha=1, beta=1).

Original entry on oeis.org

1, 2, 2, 3, 5, 5, 4, 9, 14, 14, 5, 14, 28, 42, 42, 6, 20, 48, 90, 132, 132, 7, 27, 75, 165, 297, 429, 429, 8, 35, 110, 275, 572, 1001, 1430, 1430, 9, 44, 154, 429, 1001, 2002, 3432, 4862, 4862, 10, 54, 208, 637, 1638, 3640, 7072, 11934, 16796, 16796, 11, 65, 273, 910
Offset: 1

Views

Author

Wolfdieter Lang, Jan 13 2006

Keywords

Comments

First (k=0) column removed from Catalan triangle A009766(n,k).
In the Derrida et al. 1992 reference this triangle, called here X(alpha=1,beta=1;k=1,n,m), n >= m >= 1, is called there X_{N=n}(K=1,p=m) with alpha=1 and beta=1.
The column sequences give A000027 (natural numbers), A000096, A005586, A005587, A005557, A064059, A064061 for m=1..7. The numerator polynomials for the o.g.f. of column m is found in A062991 and the denominator is (1-x)^(m+1).
The diagonal sequences are convolutions of the Catalan numbers A000108, starting with the main diagonal.

Examples

			[1];[2,2];[3,5,5];[4,9,14,14];...
a(4,2) = 9 = binomial(6,2)*3/5.
		

References

  • B. Derrida, E. Domany and D. Mukamel, An exact solution of a one-dimensional asymmetric exclusion model with open boundaries, J. Stat. Phys. 69, 1992, 667-687; eqs. (20), (21), p. 672.
  • B. Derrida, M. R. Evans, V. Hakim and V. Pasquier, Exact solution of a 1D asymmetric exclusion model using a matrix formulation, J. Phys. A 26, 1993, 1493-1517; eq. (39), p. 1501, also appendix A1, (A12) p. 1513.

Crossrefs

Row sums give A001453(n+1)=A000108(n+1)-1 (Catalan -1).

Formula

a(n, m)= binomial(n+m, n)*(n-m+1)/(n+1), n>=m>=1; a(n, m)=0 if n

A176270 Triangle T(n,m) = 1 + m*(m-n) read by rows, 0 <= m <= n.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, -1, -1, 1, 1, -2, -3, -2, 1, 1, -3, -5, -5, -3, 1, 1, -4, -7, -8, -7, -4, 1, 1, -5, -9, -11, -11, -9, -5, 1, 1, -6, -11, -14, -15, -14, -11, -6, 1, 1, -7, -13, -17, -19, -19, -17, -13, -7, 1, 1, -8, -15, -20, -23, -24, -23, -20, -15, -8, 1
Offset: 0

Author

Roger L. Bagula, Apr 13 2010

Keywords

Comments

For GCD(-1 - m,-1 - n + m) = 1, smallest number that cannot be written as a*(-1 - m) + b*(-1 - n + m) with a and b in the nonnegative integers. - Thomas Anton, May 22 2019

Examples

			Triangle begins
  1;
  1,   1;
  1,   0,   1;
  1,  -1,  -1,   1;
  1,  -2,  -3,  -2,   1;
  1,  -3,  -5,  -5,  -3,   1;
  1,  -4,  -7,  -8,  -7,  -4,   1;
  1,  -5,  -9, -11, -11,  -9,  -5,   1;
  1,  -6, -11, -14, -15, -14, -11,  -6,   1;
  1,  -7, -13, -17, -19, -19, -17, -13,  -7,   1;
  1,  -8, -15, -20, -23, -24, -23, -20, -15,  -8,   1;
		

Crossrefs

Cf. A005586 (row sums), A077028.

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> k*(k-n)+1 ))); # G. C. Greubel, May 30 2019
  • Magma
    [[k*(k-n)+1: k in [0..n]]: n in [0..12]]; // G. C. Greubel, May 30 2019
    
  • Maple
    A176270 := proc(n,m)
            1+m*(m-n) ;
    end proc: # R. J. Mathar, May 03 2013
  • Mathematica
    Table[k*(k-n)+1, {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, May 30 2019 *)
  • PARI
    {T(n,k) = k*(k-n)+1}; \\ G. C. Greubel, May 30 2019
    
  • Sage
    [[k*(k-n)+1 for k in (0..n)] for n in (0..12)] # G. C. Greubel, May 30 2019
    

Formula

T(n,m) = binomial(n-m+1,2) + binomial(m+1,2) - binomial(n+1,2) + 1 = m^2 - n*m + 1.
T(n,m) = T(n,n-m).
T(n,m) = 2 - A077028(n,m) for 0 <= m <= n. - Werner Schulte, Nov 10 2020

Extensions

Edited by R. J. Mathar, May 03 2013
Previous Showing 11-19 of 19 results.