A129936
a(n) = (n-2)*(n+3)*(n+2)/6.
Original entry on oeis.org
-2, -2, 0, 5, 14, 28, 48, 75, 110, 154, 208, 273, 350, 440, 544, 663, 798, 950, 1120, 1309, 1518, 1748, 2000, 2275, 2574, 2898, 3248, 3625, 4030, 4464, 4928, 5423, 5950, 6510, 7104, 7733, 8398, 9100, 9840, 10619, 11438, 12298, 13200, 14145, 15134, 16168, 17248
Offset: 0
-
seq(sum(i*(k-i+1), i=1..k+2), k=0..99); # Wesley Ivan Hurt, Sep 21 2013
-
f[n_] = Binomial[n + 3, 3] - (n + 3)*(n + 2)/2; Table[f[n], {n, 0, 30}]
LinearRecurrence[{4,-6,4,-1},{-2,-2,0,5},50] (* Harvey P. Dale, Jul 03 2020 *)
-
a(n)=(n-2)*(n+3)*(n+2)/6 \\ Charles R Greathouse IV, Oct 07 2015
A192174
Triangle T(n,k) of the coefficients [x^(n-k)] of the polynomial p(0,x)=-1, p(1,x)=x and p(n,x) = x*p(n-1,x) - p(n-2,x) in row n, column k.
Original entry on oeis.org
-1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, -1, 0, -1, 1, 0, -2, 0, -1, 0, 1, 0, -3, 0, 0, 0, 1, 1, 0, -4, 0, 2, 0, 2, 0, 1, 0, -5, 0, 5, 0, 2, 0, -1, 1, 0, -6, 0, 9, 0, 0, 0, -3, 0, 1, 0, -7, 0, 14, 0, -5, 0, -5, 0, 1, 1, 0, -8, 0, 20, 0, -14, 0, -5, 0, 4, 0
Offset: 0
Triangle begins
-1; # -1
1, 0; # x
1, 0, 1; # x^2+1
1, 0, 0, 0; # x^3
1, 0, -1, 0, -1; # x^4-x^2-1
1, 0, -2, 0, -1, 0;
1, 0, -3, 0, 0, 0, 1;
1, 0, -4, 0, 2, 0, 2, 0;
1, 0, -5, 0, 5, 0, 2, 0, -1;
1, 0, -6, 0, 9, 0, 0, 0, -3, 0;
1, 0, -7, 0, 14, 0, -5, 0, -5, 0, 1;
1, 0, -8, 0, 20, 0,-14, 0, -5, 0, 4, 0;
1, 0, -9, 0, 27, 0,-28, 0, 0, 0, 9, 0, -1;
-
p:= proc(n,x) option remember: if n=0 then -1 elif n=1 then x elif n>=2 then x*procname(n-1,x)-procname(n-2,x) fi: end: A192174 := proc(n,k): coeff(p(n,x),x,n-k): end: seq(seq(A192174(n,k),k=0..n), n=0..11); # Johannes W. Meijer, Aug 21 2011
A205574
Triangle T(n,k), 0<=k<=n, given by (0, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 5, 3, 1, 0, 15, 14, 9, 4, 1, 0, 52, 44, 28, 14, 5, 1, 0, 203, 154, 93, 48, 20, 6, 1, 0, 877, 595, 333, 169, 75, 27, 7, 1, 0, 4140, 2518, 1289, 624, 280, 110, 35, 8, 1, 0, 21147, 11591, 5394, 2442, 1071, 435, 154, 44, 9, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 1;
0, 2, 2, 1;
0, 5, 5, 3, 1;
0, 15, 14, 9, 4, 1;
0, 52, 44, 28, 14, 5, 1;
0, 203, 154, 93, 48, 20, 6, 1;
...
A024191
[ (3rd elementary symmetric function of 3,4,...,n+4)/(3+4+...+n+4) ].
Original entry on oeis.org
5, 19, 47, 95, 170, 280, 434, 642, 915, 1265, 1705, 2249, 2912, 3710, 4660, 5780, 7089, 8607, 10355, 12355, 14630, 17204, 20102, 23350, 26975, 31005, 35469, 40397, 45820, 51770, 58280, 65384, 73117, 81515, 90615, 100455, 111074, 122512, 134810, 148010
Offset: 1
-
Table[n(n+1)(n^2+13n+46)/24,{n,40}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{5,19,47,95,170},40] (* Harvey P. Dale, Apr 28 2014 *)
CoefficientList[Series[(5 - 6 x + 2 x^2)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Apr 28 2014 *)
-
a(n) = n*(n+1)*(n^2+13*n+46)/24 \\ Charles R Greathouse IV, Oct 21 2022
A176239
Shifted signed Catalan triangle T(n,k) = (-1)^*(n+k+1)*A009766(n,k-n+1) read by rows.
Original entry on oeis.org
0, -1, 1, -1, 0, 2, 0, 1, -2, 2, 0, -5, 0, 0, 1, -3, 5, -5, 0, 14, 0, 0, 0, 1, -4, 9, -14, 14, 0, -42, 0, 0, 0, 0, 1, -5, 14, -28, 42, -42, 0, 132, 0, 0, 0, 0, 0, 1, -6, 20, -48, 90, -132, 132, 0, -429, 0, 0, 0, 0, 0, 0, 1, -7, 27, -75, 165, -297, 429, -429, 0, 1430
Offset: 0
The triangle starts in row n=0 with columns 0 <= k < 2*(n+1) as:
0,-1; (-1)^k*k A001477
1,-1,.0,.2; (-1)^(k+1)*(k+1)*(k-2)/2 A080956, A000096
0,.1,-2,.2,.0,-5; (-1)^n*k*(k+1)*(k-4)/6 A129936, A005586
0,.0,.1,-3,.5,-5,..0,.14; (-1)^k*k*(k+1)*(k-1)*(k-6)/24, A005587
0,.0,.0,.1,-4,.9,-14,.14,.0,-42; A005557, A034807
0,.0,.0,.0,.1,-5,.14,-28,42,-42,0,132;
-
A009766 := proc(n,k) if k<0 or k >n then 0; else binomial(n+k,n)*(n-k+1)/(n+1) ; end if; end proc:
A000108 := proc(n) binomial(2*n,n)/(n+1) ; end proc:
A176239 := proc(n,k) if k <= 2*n-1 then (-1)^(n+k+1)*A009766(n,k-n+1) elif k = 2*n then 0; elif k < 2*(n+1) then (-1)^(n+1)*A000108(n+1); else 0; end if; end proc: # R. J. Mathar, Dec 03 2010
A212393
Expansion of (1-4*x+7*x^2-5*x^3+4*x^4-6*x^5+21*x^6+18*x^7-5*x^8)/(1-x)^5.
Original entry on oeis.org
1, 1, 2, 5, 14, 30, 72, 195, 485, 1059, 2065, 3682, 6120, 9620, 14454, 20925, 29367, 40145, 53655, 70324, 90610, 115002, 144020, 178215, 218169, 264495, 317837, 378870, 448300, 526864, 615330, 714497, 825195, 948285, 1084659, 1235240, 1400982, 1582870, 1781920
Offset: 0
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Sergey Kitaev, Jeffrey Remmel and Mark Tiefenbruck, Marked mesh patterns in 132-avoiding permutations I, arXiv:1201.6243v1 [math.CO], 2012 (page 21, Theorem 10).
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
-
m:=39; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-4*x+7*x^2-5*x^3+4*x^4-6*x^5+21*x^6+18*x^7-5*x^8)/(1-x)^5));
-
CoefficientList[Series[(1 - 4 x + 7 x^2 - 5 x^3 + 4 x^4 - 6 x^5 + 21 x^6 + 18 x^7 - 5 x^8)/(1 - x)^5, {x, 0, 38}], x]
-
Vec((1-4*x+7*x^2-5*x^3+4*x^4-6*x^5+21*x^6+18*x^7-5*x^8)/(1-x)^5+O(x^39))
A254749
1-gonal pyramidal numbers.
Original entry on oeis.org
1, 2, 2, 0, -5, -14, -28, -48, -75, -110, -154, -208, -273, -350, -440, -544, -663, -798, -950, -1120, -1309, -1518, -1748, -2000, -2275, -2574, -2898, -3248, -3625, -4030, -4464, -4928, -5423, -5950, -6510, -7104, -7733, -8398, -9100, -9840, -10619, -11438
Offset: 1
G.f. = x + 2*x^2 + 2*x^3 - 5*x^5 - 14*x^6 - 28*x^7 - 48*x^8 - 75*x^9 + ...
-
[(n*(4+3*n-n^2))/6: n in [1..60]]; // G. C. Greubel, Aug 03 2018
-
Table[(n*(4+3*n-n^2))/6, {n,1,60}] (* or *) LinearRecurrence[{4,-6,4,-1}, {1, 2, 2, 0}, 60] (* G. C. Greubel, Aug 03 2018 *)
-
ppg(r, n) = (3*n^2+n^3*(r-2)-n*(r-5))/6
vector(100, n, ppg(1, n))
A115126
First (k=1) triangle of numbers related to totally asymmetric exclusion process (case alpha=1, beta=1).
Original entry on oeis.org
1, 2, 2, 3, 5, 5, 4, 9, 14, 14, 5, 14, 28, 42, 42, 6, 20, 48, 90, 132, 132, 7, 27, 75, 165, 297, 429, 429, 8, 35, 110, 275, 572, 1001, 1430, 1430, 9, 44, 154, 429, 1001, 2002, 3432, 4862, 4862, 10, 54, 208, 637, 1638, 3640, 7072, 11934, 16796, 16796, 11, 65, 273, 910
Offset: 1
[1];[2,2];[3,5,5];[4,9,14,14];...
a(4,2) = 9 = binomial(6,2)*3/5.
- B. Derrida, E. Domany and D. Mukamel, An exact solution of a one-dimensional asymmetric exclusion model with open boundaries, J. Stat. Phys. 69, 1992, 667-687; eqs. (20), (21), p. 672.
- B. Derrida, M. R. Evans, V. Hakim and V. Pasquier, Exact solution of a 1D asymmetric exclusion model using a matrix formulation, J. Phys. A 26, 1993, 1493-1517; eq. (39), p. 1501, also appendix A1, (A12) p. 1513.
A176270
Triangle T(n,m) = 1 + m*(m-n) read by rows, 0 <= m <= n.
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 1, -1, -1, 1, 1, -2, -3, -2, 1, 1, -3, -5, -5, -3, 1, 1, -4, -7, -8, -7, -4, 1, 1, -5, -9, -11, -11, -9, -5, 1, 1, -6, -11, -14, -15, -14, -11, -6, 1, 1, -7, -13, -17, -19, -19, -17, -13, -7, 1, 1, -8, -15, -20, -23, -24, -23, -20, -15, -8, 1
Offset: 0
Triangle begins
1;
1, 1;
1, 0, 1;
1, -1, -1, 1;
1, -2, -3, -2, 1;
1, -3, -5, -5, -3, 1;
1, -4, -7, -8, -7, -4, 1;
1, -5, -9, -11, -11, -9, -5, 1;
1, -6, -11, -14, -15, -14, -11, -6, 1;
1, -7, -13, -17, -19, -19, -17, -13, -7, 1;
1, -8, -15, -20, -23, -24, -23, -20, -15, -8, 1;
-
Flat(List([0..12], n-> List([0..n], k-> k*(k-n)+1 ))); # G. C. Greubel, May 30 2019
-
[[k*(k-n)+1: k in [0..n]]: n in [0..12]]; // G. C. Greubel, May 30 2019
-
A176270 := proc(n,m)
1+m*(m-n) ;
end proc: # R. J. Mathar, May 03 2013
-
Table[k*(k-n)+1, {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, May 30 2019 *)
-
{T(n,k) = k*(k-n)+1}; \\ G. C. Greubel, May 30 2019
-
[[k*(k-n)+1 for k in (0..n)] for n in (0..12)] # G. C. Greubel, May 30 2019
Previous
Showing 11-19 of 19 results.
Comments