cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-39 of 39 results.

A270863 Self-composition of the Fibonacci sequence.

Original entry on oeis.org

0, 1, 2, 6, 17, 50, 147, 434, 1282, 3789, 11200, 33109, 97878, 289354, 855413, 2528850, 7476023, 22101326, 65338038, 193158521, 571033600, 1688143881, 4990651642, 14753839486, 43616704857, 128943855250, 381196100507, 1126928202714, 3331532438042, 9848993360069
Offset: 0

Views

Author

Oboifeng Dira, Mar 24 2016

Keywords

Comments

This sequence has the same relation to the Fibonacci numbers A000045 as A030267 has to the natural numbers A000027.
From Oboifeng Dira, Jun 28 2020: (Start)
This sequence can be generated from a family of composition pairs of generating functions g(f(x)), where k is an integer and where
f(x) = x/(1-k*x-x^2) and g(x) = (x+(k-1)*x^2)/(1-(3-2*k)*x-(3*k-k^2-1)*x^2).
Some cases of k values are:
k=-5, f(x) g.f. 0,A052918(-1)^n and g(x) g.f. 0,A081571
k=-4, f(x) g.f. A001076(-1)^(n+1) and g(x) g.f. 0,A081570
k=-3, f(x) g.f. A006190(-1)^(n+1) and g(x) g.f. 0,A081569
k=-2, f(x) g.f. A215936(n+2) and g(x) g.f. 0,A081568
k=-1, f(x) g.f. A039834(n+2) and g(x) g.f. 0,A081567
k=0, f(x) g.f. A000035 and g(x) g.f. 0,A001519(n+1)
k=1, f(x) g.f. A000045 and g(x) g.f. A000045
k=2, f(x) g.f. A000129 and g(x) g.f. 0,A039834(n+1)
k=3, f(x) g.f. A006190 and g(x) g.f. 0,A001519(-1)^n
k=4, f(x) g.f. A001076 and g(x) g.f. 0,A093129(-1)^n
k=5, f(x) g.f. 0,A052918 and g(x) g.f. 0,A192240(-1)^n
k=6, f(x) g.f. A005668 and g(x)=(x+5*x^2)/(1+9*x+19*x^2)
k=7, f(x) g.f. 0,A054413 and g(x)=(x+6*x^2)/(1+11*x+29*x^2).
(End)

Examples

			a(5) = 3*a(4)+a(3)-3*a(2)-a(1) = 51+6-6-1 = 50.
		

Crossrefs

Programs

  • Magma
    I:=[0, 1, 2, 6]; [m le 4 select I[m] else 3*Self(m-1)+Self(m-2)-3*Self(m-3)-Self(m-4): m in [1..30]]; // Marius A. Burtea, Aug 03 2019
  • Maple
    f:= x-> x/(1-x-x^2):
    a:= n-> coeff(series(f(f(x)), x, n+1), x, n):
    seq(a(n), n=0..30);
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,-3,1,3]^(n-1)*[1;2;6;17])[1,1] \\ Charles R Greathouse IV, Mar 24 2016
    
  • PARI
    concat(0, Vec(x*(1-x-x^2)/(1-3*x-x^2+3*x^3+x^4) + O(x^40))) \\ Colin Barker, Mar 24 2016
    

Formula

a(n) = 3*a(n-1)+a(n-2)-3*a(n-3)-a(n-4) for n > 3, a(0)=0, a(1)=1, a(2)=2, a(3)=6.
G.f.: x*(1-x-x^2) / (1-3*x-x^2+3*x^3+x^4). - Colin Barker, Mar 24 2016
G.f.: B(B(x)) where B(x) is the g.f. of A000045. - Joerg Arndt, Mar 25 2016
a(n) = (phi*((phi^2 + 5^(1/4)*sqrt(3*phi))^n - (phi^2 - 5^(1/4)*sqrt(3*phi))^n) + (psi^2 + 5^(1/4)*sqrt(3*psi))^n - (psi^2 - 5^(1/4)*sqrt(3*psi))^n)/(2^n * 5^(3/4) * sqrt(3*phi)), where phi = (sqrt(5) + 1)/2 is the golden ratio, and psi = 1/phi = (sqrt(5) - 1)/2. - Vladimir Reshetnikov, Aug 01 2019
0 = a(n)*(a(n) +6*a(n+1) -a(n+2)) +a(n+1)*(8*a(n+1) -9*a(n+2) +a(n+3)) +a(n+2)*(-8*a(n+2) +6*a(n+3)) +a(n+3)*(-a(n+3)) if n>=0. - Michael Somos, Feb 05 2022

A189800 a(n) = 6*a(n-1) + 8*a(n-2), with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 6, 44, 312, 2224, 15840, 112832, 803712, 5724928, 40779264, 290475008, 2069084160, 14738305024, 104982503424, 747801460736, 5326668791808, 37942424436736, 270267896954880, 1925146777223168, 13713023838978048, 97679317251653632, 695780094221746176
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 6*Self(n-1)+8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
    
  • Mathematica
    LinearRecurrence[{6, 8}, {0, 1}, 50]
    CoefficientList[Series[-(x/(-1+6 x+8 x^2)),{x,0,50}],x] (* Harvey P. Dale, Jul 26 2011 *)
  • PARI
    a(n)=([0,1; 8,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016

Formula

G.f.: x/(1 - 2*x*(3+4*x)). - Harvey P. Dale, Jul 26 2011

A213895 Fixed points of a sequence h(n) defined by the minimum number of 6's in the relation n*[n,6,6,...,6,n] = [x,...,x] between simple continued fractions.

Original entry on oeis.org

7, 11, 23, 47, 127, 139, 211, 223, 251, 331, 367, 379, 383, 463, 487, 499, 607, 619, 691, 727, 739, 743, 811, 823, 863, 887, 967, 971, 983, 1051, 1063, 1087, 1171, 1291, 1303, 1327, 1367, 1423, 1447, 1451, 1459
Offset: 1

Views

Author

Art DuPre, Jun 23 2012

Keywords

Comments

In a variant of A213891, multiply n by a number with simple continued fraction [n,6,6,...,6,n] and increase the number of 6's until the continued fraction of the product has the same first and last entry (called x in the NAME). Examples are
2 * [2, 6, 2] = [4, 3, 4],
3 * [3, 6, 3] = [9, 2, 9],
4 * [4, 6, 6, 6, 4] = [16, 1, 1, 1, 5, 1, 1, 1, 16],
5 * [5, 6, 6, 6, 6, 5] = [25, 1, 4, 3, 3, 4, 1, 25],
6 * [6, 6, 6] = [36, 1, 36],
7 * [7, 6, 6, 6, 6, 6, 6, 6, 7] = [50, 7, 2, 1, 4, 4, 4, 1, 2, 7, 50].
The number of 6's needed defines the sequence h(n) = 1, 1, 3, 4, 1, 7, 7, 5, 9, ... (n>=2).
The current sequence contains the fixed points of h, i.e., those n where h(n)=n.
We conjecture that this sequence contains numbers is analogous to the sequence of prime numbers A000057, in the sense that, instead of referring to the Fibonacci sequences (sequences satisfying f(n) = f(n-1) + f(n-2) with arbitrary positive integer values for f(1) and f(2)) it refers to the generalized Fibonacci sequences satisfying f(n) = 6*f(n-1) + f(n-2), A005668, A015451, A179237, etc. This would mean that a prime is in the sequence if and only if it divides some term in each of the sequences satisfying f(n) = 6*f(n-1) + f(n-2).
The above sequence h() is recorded as A262216. - M. F. Hasler, Sep 15 2015

Crossrefs

Programs

  • Mathematica
    f[m_, n_] := Block[{c, k = 1}, c[x_, y_] := ContinuedFraction[x FromContinuedFraction[Join[{x}, Table[m, {y}], {x}]]]; While[First@ c[n, k] != Last@ c[n, k], k++]; k]; Select[Range[2, 1000], f[6, #] == # &] (* Michael De Vlieger, Sep 16 2015 *)
  • PARI
    {a(n) = local(t, m=1); if( n<2, 0, while( 1,
       t = contfracpnqn( concat([n, vector(m,i,6), n]));
       t = contfrac(n*t[1,1]/t[2,1]);
       if(t[1]
    				

A218991 Power floor sequence of 3+sqrt(10).

Original entry on oeis.org

6, 36, 221, 1361, 8386, 51676, 318441, 1962321, 12092366, 74516516, 459191461, 2829665281, 17437183146, 107452764156, 662153768081, 4080375372641, 25144406003926, 154946811396196, 954825274381101, 5883898457682801
Offset: 0

Views

Author

Clark Kimberling, Nov 12 2012

Keywords

Comments

See A214992 for a discussion of power floor sequence and the power floor function, p1(x) = lim_{n->oo} a(n,x)/x^n. The present sequence is a(n,r), where r = 3+sqrt(10), and the limit p1(r) = 5.815421188487681054332319082...
See A218992 for the power floor function, p4. For comparison with p1, we have lim_{r->oo} p4(r)/p1(r) = (3+sqrt(10))/5 = 1.23245553....

Examples

			a(0) = floor(r) = 6, where r = 3+sqrt(10);
a(1) = floor(6*r) = 36;
a(2) = floor(36*r) = 221.
		

Crossrefs

Cf. A176398 (3+sqrt(10)).

Programs

  • Magma
    [IsZero(n) select Floor(r) else Floor(r*Self(n)) where r is 3+Sqrt(10): n in [0..20]]; // Bruno Berselli, Nov 22 2012
  • Mathematica
    x = 3 + Sqrt[10]; z = 30; (* z = # terms in sequences *)
    f[x_] := Floor[x]; c[x_] := Ceiling[x];
    p1[0] = f[x]; p2[0] = f[x]; p3[0] = c[x]; p4[0] = c[x];
    p1[n_] := f[x*p1[n - 1]]
    p2[n_] := If[Mod[n, 2] == 1, c[x*p2[n - 1]], f[x*p2[n - 1]]]
    p3[n_] := If[Mod[n, 2] == 1, f[x*p3[n - 1]], c[x*p3[n - 1]]]
    p4[n_] := c[x*p4[n - 1]]
    t1 = Table[p1[n], {n, 0, z}]  (* A218991 *)
    t2 = Table[p2[n], {n, 0, z}]  (* A005668 *)
    t3 = Table[p3[n], {n, 0, z}]  (* A015451 *)
    t4 = Table[p4[n], {n, 0, z}]  (* A218992 *)

Formula

a(n) = floor(r*a(n-1)), where r=3+sqrt(10), a(0) = floor(r).
a(n) = 7*a(n-1) - 5*a(n-2) - a(n-3).
G.f.: (6 - 6*x - x^2)/(1 - 7*x + 5*x^2 + x^3).
a(n) = ((5+sqrt(10))*(3-sqrt(10))^(n+2) + (5-sqrt(10))*(3+sqrt(10))^(n+2)+2)/12. - Bruno Berselli, Nov 22 2012

A218992 Power ceiling sequence of 3+sqrt(10).

Original entry on oeis.org

7, 44, 272, 1677, 10335, 63688, 392464, 2418473, 14903303, 91838292, 565933056, 3487436629, 21490552831, 132430753616, 816075074528, 5028881200785, 30989362279239, 190965054876220, 1176779691536560, 7251643204095581
Offset: 0

Views

Author

Clark Kimberling, Nov 12 2012

Keywords

Comments

See A214992 for a discussion of power ceiling sequence and the power ceiling function, p4(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = 3+sqrt(10), and the limit p4(r) = 7.16724801485749657...
See A218991 for the power floor function, p1(x); for comparison of p1 and p4, we have limit(p4(r)/p1(r) = (3+sqrt(10))/5 = 1.23245553...

Examples

			a(0) = ceiling(r) = 7, where r = 3+sqrt(10);
a(1) = ceiling(7*r) = 44;
a(2) = ceiling(44*r) = 272.
		

Crossrefs

Cf. A176398 (3+sqrt(10)).

Programs

  • Magma
    [IsZero(n) select Ceiling(r) else Ceiling(r*Self(n)) where r is 3+Sqrt(10): n in [0..20]]; // Bruno Berselli, Nov 22 2012
  • Mathematica
    (See A218991.)
    LinearRecurrence[{7,-5,-1},{7,44,272},20] (* Harvey P. Dale, Sep 22 2016 *)

Formula

a(n) = ceiling(r*a(n-1)), where r=3+sqrt(10), a(0) = ceiling(r).
a(n) = 7*a(n-1) - 5*a(n-2) - a(n-3).
G.f.: (7 - 5*x - x^2)/(1 - 7*x + 5*x^2 + x^3).
a(n) = ((5+sqrt(10))*(3-sqrt(10))^(n+3)+(5-sqrt(10))*(3+sqrt(10))^(n+3)-10)/60. [Bruno Berselli, Nov 22 2012]

A041683 Denominators of continued fraction convergents to sqrt(360).

Original entry on oeis.org

1, 1, 37, 38, 1405, 1443, 53353, 54796, 2026009, 2080805, 76934989, 79015794, 2921503573, 3000519367, 110940200785, 113940720152, 4212806126257, 4326746846409, 159975692596981, 164302439443390, 6074863512559021, 6239165952002411
Offset: 0

Views

Author

Keywords

Comments

The following remarks assume an offset of 1. This is the sequence of Lehmer numbers U_n(sqrt(R),Q) for the parameters R = 36 and Q = -1; it is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for all positive integers n and m. Consequently, this is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, May 28 2014

Crossrefs

Programs

  • Magma
    I:=[1,1,37,38]; [n le 4 select I[n] else 38*Self(n-2)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Dec 22 2013
  • Mathematica
    Denominator[Convergents[Sqrt[360], 30]] (* Vincenzo Librandi, Dec 22 2013 *)

Formula

G.f.: -(x^2-x-1) / ((x^2-6*x-1)*(x^2+6*x-1)). - Colin Barker, Nov 21 2013
a(n) = 38*a(n-2) - a(n-4) for n > 3. - Vincenzo Librandi, Dec 22 2013
From Peter Bala, May 28 2014: (Start)
The following remarks assume an offset of 1.
Let alpha = 3 + sqrt(10) and beta = 3 - sqrt(10) be the roots of the equation x^2 - 6*x - 1 = 0. Then a(n) = (alpha^n - beta^n)/(alpha - beta) for n odd, while a(n) = (alpha^n - beta^n)/(alpha^2 - beta^2) for n even.
a(n) = A005668(n+1) for n even; a(n) = 1/6*A005668(n+1) for n odd.
a(n) = Product_{k = 1..floor((n-1)/2)} ( 36 + 4*cos^2(k*Pi/n) ).
Recurrence equations: a(0) = 0, a(1) = 1 and for n >= 1, a(2*n) = a(2*n - 1) + a(2*n - 2) and a(2*n + 1) = 36*a(2*n) + a(2*n - 1). (End)

Extensions

More terms from Colin Barker, Nov 21 2013

A172343 Triangle t(n,k) read by rows: fibonomial ratios c(n)/(c(k)*c(n-k)) where c are partial products of a generalized Fibonacci sequence with multiplier m=6.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 37, 37, 1, 1, 228, 1406, 228, 1, 1, 1405, 53390, 53390, 1405, 1, 1, 8658, 2027415, 12493260, 2027415, 8658, 1, 1, 53353, 76988379, 2923477635, 2923477635, 76988379, 53353, 1, 1, 328776, 2923530988, 684106251192
Offset: 0

Views

Author

Roger L. Bagula, Feb 01 2010

Keywords

Comments

Start from the generalized Fibonacci sequence A005668 and its partial products c(n) = 1, 1, 6, 222, 50616, 71115480, 615717825840, 32850393162041520... Then t(n,k) = c(n)/(c(k)*c(n-k)).
Row sums are 1, 2, 8, 76, 1864, 109592, 16565408, 6001038736, 5589714971584,
12478331908166432, 71624411004755875328,...

Examples

			1;
1, 1;
1, 6, 1;
1, 37, 37, 1;
1, 228, 1406, 228, 1;
1, 1405, 53390, 53390, 1405, 1;
1, 8658, 2027415, 12493260, 2027415, 8658, 1;
1, 53353, 76988379, 2923477635, 2923477635, 76988379, 53353, 1;
1, 328776, 2923530988, 684106251192, 4215654749670, 684106251192, 2923530988, 328776, 1;
		

Crossrefs

Cf. A010048 (m=1), A099927 (m=2), A172342 (m=5), A172345 (m=7).

Programs

  • Mathematica
    Clear[f, c, a, t];
    f[0, a_] := 0; f[1, a_] := 1;
    f[n_, a_] := f[n, a] = a*f[n - 1, a] + f[n - 2, a];
    c[n_, a_] := If[n == 0, 1, Product[f[i, a], {i, 1, n}]];
    t[n_, m_, a_] := c[n, a]/(c[m, a]*c[n - m, a]);
    Table[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}], {a, 1, 10}];
    Table[Flatten[Table[Table[t[n, m, a], {m, 0, n}], {n, 0, 10}]], {a, 1, 10}]

A304255 Triangle read by rows: T(0,0) = 1; T(n,k) = 6*T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, 6, 36, 1, 216, 12, 1296, 108, 1, 7776, 864, 18, 46656, 6480, 216, 1, 279936, 46656, 2160, 24, 1679616, 326592, 19440, 360, 1, 10077696, 2239488, 163296, 4320, 30, 60466176, 15116544, 1306368, 45360, 540, 1, 362797056, 100776960, 10077696, 435456, 7560, 36
Offset: 0

Views

Author

Zagros Lalo, May 09 2018

Keywords

Comments

The numbers in rows of the triangle are along skew diagonals pointing top-left in center-justified triangle given in A013613 ((1+6*x)^n).
The coefficients in the expansion of 1/(1-6x-x^2) are given by the sequence generated by the row sums.
The row sums are Denominators of continued fraction convergent to sqrt(10), see A005668.
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 6.162277660..., a metallic mean (see A176398), when n approaches infinity.

Examples

			Triangle begins:
1;
6;
36, 1;
216, 12;
1296, 108, 1;
7776, 864, 18;
46656, 6480, 216, 1;
279936, 46656, 2160, 24;
1679616, 326592, 19440, 360, 1;
10077696, 2239488, 163296, 4320, 30;
60466176, 15116544, 1306368, 45360, 540, 1;
362797056, 100776960, 10077696, 435456, 7560, 36;
2176782336, 665127936, 75582720, 3919104, 90720, 756, 1;
13060694016, 4353564672, 554273280, 33592320, 979776, 12096, 42;
78364164096, 28298170368, 3990767616, 277136640, 9797760, 163296, 1008, 1;
470184984576, 182849716224, 28298170368, 2217093120, 92378880, 1959552, 18144, 48;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 94.

Crossrefs

Row sums give A005668.
Cf. A000400 (column 0), A053469 (column 1), A081136 (column 2), A081144 (column 3).
Cf. A013613.
Cf. A176398.

Programs

  • Mathematica
    t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 6 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 11}, {k, 0, Floor[n/2]}] // Flatten
  • PARI
    T(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, 6*T(n-1, k) + T(n-2, k-1)));
    tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n,k), ", ")); print); \\ Michel Marcus, May 26 2018

A305534 Index of the smallest prime in the n-Fibonacci sequence, or the Lucas U(n,-1) sequence.

Original entry on oeis.org

3, 2, 2, 3, 2, 3, 2, 5, 29, 3, 2, 5, 2, 3, 23, 3, 2, 7, 2, 3, 29, 19, 2, 3, 83, 3, 53, 19, 2, 5, 2, 5, 5, 5479, 71, 3, 2, 17, 11, 3, 2, 37, 2, 31, 5, 11, 2, 5
Offset: 1

Views

Author

Eric Chen, Jun 04 2018

Keywords

Comments

Smallest k such that the k-th Fibonacci polynomial evaluated at x=n is prime. (The first few Fibonacci polynomials are 1, x, x^2 + 1, x^3 + 2*x, x^4 + 3*x^2 + 1, x^5 + 4*x^3 + 3*x, ...)
All terms are primes, since if a divides b, then the a-th term of the n-Fibonacci sequence also divides the b-th term of the n-Fibonacci sequence.
Corresponding primes are 2, 2, 3, 17, 5, 37, 7, 4289, 726120289954448054047428229, 101, 11, 21169, 13, 197, 82088569942721142820383601, 257, 17, 34539049, 19, 401, ...
a(n) = 2 if and only if n is prime.
a(n) = 3 if and only if n^2 + 1 is prime (A005574), except n=2 (since 2 is the only prime p such that p^2 + 1 is also prime).
a(34) > 1024, does a(n) exist for all n >= 1? (However, 17 is the only prime in the first 1024 terms of the 4-Fibonacci sequence, and it seems that 17 is the only prime in the 4-Fibonacci sequence.)
a(35)..a(48) = 71, 3, 2, 17, 11, 3, 2, 37, 2, 31, 5, 11, 2, 5, a(50)..a(54) = 11, 11, 23, 2, 3, a(56) = 3, a(58)..a(75) = 5, 2, 47, 2, 5, 311, 13, 233, 3, 2, 5, 11, 5, 2, 7, 2, 3, 5. Unknown terms a(34), a(49), a(55), a(57), exceed 1024, if they exist.
a(49) > 20000, if it exists. - Giovanni Resta, Jun 06 2018

Crossrefs

Cf. A001605, A096650, A209493, which are the indices of the primes in the n-Fibonacci sequence for n = 1, 2, 3.
Cf. A005478, A086383, A201001, which are the primes in the n-Fibonacci sequence for n = 1, 2, 3.
Cf. A000045, A000129, A006190, A001076, A052918, A005668, A054413, A041025, A099371, A041041, A049666, A041061 (the n-Fibonacci sequence for n = 1 to 12).
Cf. A302990 (for n-step Fibonacci sequence instead of n-Fibonacci sequence).

Programs

  • PARI
    b(n,k)=([n,1;1,0]^k)[1,2]
    a(n)=for(k=1,2^12,if(ispseudoprime(b(n,k)),return(k)))

Extensions

a(34)-a(48) from Giovanni Resta, Jun 06 2018
Previous Showing 31-39 of 39 results.