A185249
Triangle read by rows: Table III.5 of Myriam de Sainte-Catherine's 1983 thesis.
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 1, 0, 5, 0, 1, 0, 3, 0, 14, 0, 1, 1, 0, 14, 0, 42, 0, 1, 0, 4, 0, 84, 0, 132, 0, 1, 1, 0, 30, 0, 594, 0, 429, 0, 1, 0, 5, 0, 330, 0, 4719, 0, 1430, 0, 1, 1, 0, 55, 0, 4719, 0, 40898, 0, 4862, 0, 1, 0, 6, 0, 1001, 0, 81796, 0, 379236, 0, 16796, 0, 1, 1, 0, 91, 0, 26026, 0, 1643356, 0, 3711916, 0, 58786, 0, 1
Offset: 0
Triangle begins:
1
0 1
1 0 1
0 2 0 1
1 0 5 0 1
0 3 0 14 0 1
1 0 14 0 42 0 1
0 4 0 84 0 132 0 1
1 0 30 0 594 0 429 0 1
0 5 0 330 0 4719 0 1430 0 1
1 0 55 0 4719 0 40898 0 4862 0 1
0 6 0 1001 0 81796 0 379236 0 16796 0 1
1 0 91 0 26026 0 1643356 0 3711916 0 58786 0 1
...
- Myriam de Sainte-Catherine, Couplages et Pfaffiens en Combinatoire, Physique et Informatique. Ph.D. Dissertation, Université Bordeaux I, 1983.
- Alois P. Heinz, Rows n = 0..100, flattened
- M. de Sainte-Catherine and G. Viennot, Enumeration of certain Young tableaux with bounded height, in: G. Labelle and P. Leroux (eds), Combinatoire énumérative, Lecture Notes in Mathematics, vol. 1234, Springer, Berlin, Heidelberg, 1986, pp. 58-67.
- M. Somos, Number Walls in Combinatorics, 2000.
-
with(LinearAlgebra):
ctln:= proc(n) option remember; binomial(2*n, n)/(n+1) end:
T := proc(n, k)
if n=k then 1
elif irem(n+k, 2)=1 then 0
else Determinant(Matrix((n-k)/2, (i, j)-> ctln(i+j-1+k)))
fi
end:
seq(seq(T(n,k), k=0..n), n=0..12); # Alois P. Heinz, Feb 15 2011
-
t[n_, n_] = 1; t[n_, k_] /; Mod[n+k, 2] == 1 = 0; t[n_, k_] := Array[CatalanNumber[#1 + #2 - 1 + k]&, {(n-k)/2, (n-k)/2}] // Det; Table[t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 14 2014, after Alois P. Heinz *)
-
{T(n, k) = if((n-k)%2||k<0||k>n, 0, prod(i=1, k, prod(j=i, k, (n-k+i+j)/(i+j))))}; /* Michael Somos, Aug 15 2023 */
A005701
Number of exterior points formed by extending diagonals of n-gon in general position.
Original entry on oeis.org
3, 14, 40, 90, 175, 308, 504, 780, 1155, 1650, 2288, 3094, 4095, 5320, 6800, 8568, 10659, 13110, 15960, 19250, 23023, 27324, 32200, 37700, 43875, 50778, 58464, 66990, 76415, 86800, 98208, 110704, 124355
Offset: 0
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 74, Problem 8.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Dominique Gouyou-Beauchamps, Chemins sous-diagonaux et tableaux de Young, pp. 112-125 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, Springer, 1986.
- Dominique Gouyou-Beauchamps, Chemins sous-diagonaux et tableaux de Young, pp. 112-125 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, Springer, 1986. (Annotated scanned copy)
- Index entries for sequences related to Young tableaux.
A diagonal of the triangle in
A179898.
-
[(n+1)*(n+2)*(n+3)*(n+6)/12: n in [0..50]]; // Vincenzo Librandi, Jun 09 2013
-
CoefficientList[Series[(x - 3) / (x - 1)^5, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 09 2013 *)
-
a(n) = (n+1)*(n+2)*(n+3)*(n+6)/12; \\ Michel Marcus, Dec 16 2017
A179898
Triangle V(l,p) (l>=0, p=0..l) read by rows: see Formula for definition, see Comments for motivation.
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 3, 0, 6, 0, 1, 0, 14, 0, 10, 0, 1, 14, 0, 40, 0, 15, 0, 1, 0, 84, 0, 90, 0, 21, 0, 1, 84, 0, 300, 0, 175, 0, 28, 0, 1, 0, 594, 0, 825, 0, 308, 0, 36, 0, 1, 594, 0, 2475, 0, 1925, 0, 504, 0, 45, 0, 1, 0, 4719, 0, 7865, 0, 4004, 0, 780, 0, 55, 0, 1, 4719, 0, 22022, 0, 21021, 0, 7644, 0, 1155, 0, 66, 0, 1, 0, 40898, 0, 78078, 0, 49686, 0, 13650, 0, 1650, 0, 78, 0, 1, 40898, 0, 208208, 0, 231868, 0, 107016, 0, 23100, 0, 2288, 0, 91, 0, 1, 0, 379236, 0, 804440, 0, 606424, 0, 214200, 0, 37400, 0, 3094, 0, 105, 0, 1
Offset: 0
Triangle begins:
1;
0, 1;
1, 0, 1;
0, 3, 0, 1;
3, 0, 6, 0, 1;
0, 14, 0, 10, 0, 1;
14, 0, 40, 0, 15, 0, 1;
0, 84, 0, 90, 0, 21, 0, 1;
84, 0, 300, 0, 175, 0, 28, 0, 1;
0, 594, 0, 825, 0, 308, 0, 36, 0, 1;
594, 0, 2475, 0, 1925, 0, 504, 0, 45, 0, 1;
0, 4719, 0, 7865, 0, 4004, 0, 780, 0, 55, 0, 1;
4719, 0, 22022, 0, 21021, 0, 7644, 0, 1155, 0, 66, 0, 1;
0, 40898, 0, 78078, 0, 49686, 0, 13650, 0, 1650, 0, 78, 0, 1;
40898, 0, 208208, 0, 231868, 0, 107016, 0, 23100, 0, 2288, 0, 91, 0, 1;
...
- D. Gouyou-Beauchamps, Chemins sous-diagonaux et tableau de Young, pp. 112-125 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986 (see |V_{l,p}| on page 114).
-
V:=proc(l,p)
if ((l-p) mod 2) = 1 then 0 else l!*(l+2)!*(p+3)! / (((l-p)/2)!*((l-p)/2+1)!*p!*((l+p)/2+2)!*((l+p)/2+3)!); fi;
end;
r:=n->[seq( V(n,p),p=0..n)];
for n from 0 to 15 do lprint(r(n)); od:
-
v[l_, p_] := If[Mod[l-p, 2] == 1, 0, l!*(l+2)!*(p+3)!/(((l-p)/2)!*((l-p)/2+1)!*p!*((l+p)/2+2)!*((l+p)/2+3)!)]; Table[v[l, p], {l, 0, 15}, {p, 0, l}] // Flatten (* Jean-François Alcover, Jan 09 2014, translated from Maple *)
A193691
Triangle T(n,k), n>=0, 1<=k<=C(n), read by rows: T(n,k) = number of elements <= k-th path in the poset of Dyck paths of semilength n ordered by inclusion.
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 2, 4, 5, 1, 2, 2, 4, 5, 2, 4, 4, 8, 10, 5, 10, 13, 14, 1, 2, 2, 4, 5, 2, 4, 4, 8, 10, 5, 10, 13, 14, 2, 4, 4, 8, 10, 4, 8, 8, 16, 20, 10, 20, 26, 28, 5, 10, 10, 20, 25, 13, 26, 34, 37, 14, 28, 37, 41, 42, 1, 2, 2, 4, 5, 2, 4, 4, 8, 10, 5, 10, 13, 14, 2, 4, 4, 8, 10, 4
Offset: 0
Dyck paths of semilength n=3 listed in lexicographic order:
. /\
. /\ /\ /\/\ / \
. /\/\/\ /\/ \ / \/\ / \ / \
. 101010 101100 110010 110100 111000
. k = (1) (2) (3) (4) (5)
.
We have (1) <= (1); (1),(2) <= (2); (1),(3) <= (3); (1),(2),(3),(4) <= (4); and (1),(2),(3),(4),(5) <= (5), thus row 3 = [1, 2, 2, 4, 5].
Triangle begins:
1;
1;
1, 2;
1, 2, 2, 4, 5;
1, 2, 2, 4, 5, 2, 4, 4, 8, 10, 5, 10, 13, 14;
1, 2, 2, 4, 5, 2, 4, 4, 8, 10, 5, 10, 13, 14, 2, 4, 4, 8, ...
Lengths and last elements of rows give
A000108.
-
d:= proc(n, l) local m; m:= nops(l);
`if`(n=m, [l], [seq(d(n, [l[], j])[],
j=`if`(m=0, 1, max(m+1, l[-1]))..n)])
end:
le:= proc(x, y) local i;
for i to nops(x) do if x[i]>y[i] then return false fi od; true
end:
T:= proc(n) option remember; local l;
l:= d(n, []);
seq(add(`if`(le(l[i], l[j]), 1, 0), i=1..j), j=1..nops(l))
end:
seq(T(n), n=0..6);
-
d[n_, l_] := d[n, l] = Module[{m}, m = Length[l]; If[n == m, {l}, Flatten[#, 1]& @ Table[d[n, Append[l, j]], {j, If[m == 0, 1, Max[m+1, Last[l]]], n}]]]; le[x_, y_] := Module[{i}, For[i = 1, i <= Length[x], i++, If[x[[i]] > y[[i]], Return[False]]]; True]; T[n_] := T[n] = Module[{l}, l = d[n, {}]; Table[Sum[If[le[l[[i]], l[[j]]], 1, 0], {i, 1, j}], {j, 1, Length[l]}]]; Table[T[n], {n, 0, 6}] // Flatten (* Jean-François Alcover, Feb 01 2017, after Alois P. Heinz *)
A193692
Triangle T(n,k), n>=0, 1<=k<=C(n), read by rows: T(n,k) = number of elements >= k-th path in the poset of Dyck paths of semilength n ordered by inclusion.
Original entry on oeis.org
1, 1, 2, 1, 5, 3, 3, 2, 1, 14, 9, 10, 7, 4, 9, 6, 7, 5, 3, 4, 3, 2, 1, 42, 28, 32, 23, 14, 32, 22, 26, 19, 12, 17, 13, 9, 5, 28, 19, 22, 16, 10, 23, 16, 19, 14, 9, 13, 10, 7, 4, 14, 10, 12, 9, 6, 9, 7, 5, 3, 5, 4, 3, 2, 1, 132, 90, 104, 76, 48, 107, 75, 89, 66, 43, 62, 48, 34, 20, 104
Offset: 0
Dyck paths of semilength n=3 listed in lexicographic order:
. /\
. /\ /\ /\/\ / \
. /\/\/\ /\/ \ / \/\ / \ / \
. 101010 101100 110010 110100 111000
. k = (1) (2) (3) (4) (5)
.
We have (1),(2),(3),(4),(5) >= (1); (2),(4),(5) >= (2); (3),(4),(5) >= (3);
(4),(5) >= (4); and (5) >= (5), thus row 3 = [5, 3, 3, 2, 1].
Triangle begins:
1;
1;
2, 1;
5, 3, 3, 2, 1;
14, 9, 10, 7, 4, 9, 6, 7, 5, 3, 4, 3, 2, 1;
42, 28, 32, 23, 14, 32, 22, 26, 19, 12, 17, 13, 9, 5, 28, 19, 22, 16, ...
Lengths and first elements of rows give
A000108.
-
d:= proc(n, l) local m; m:= nops(l);
`if`(n=m, [l], [seq(d(n, [l[], j])[],
j=`if`(m=0, 1, max(m+1, l[-1]))..n)])
end:
le:= proc(x, y) local i;
for i to nops(x) do if x[i]>y[i] then return false fi od; true
end:
T:= proc(n) option remember; local l;
l:= d(n, []);
seq(add(`if`(le(l[j], l[i]), 1, 0), i=j..nops(l)), j=1..nops(l))
end:
seq(T(n), n=0..6);
-
d[n_, l_] := d[n, l] = Module[{m}, m = Length[l]; If[n == m, {l}, Flatten[#, 1]& @ Table[d[n, Append[l, j]], {j, If[m == 0, 1, Max[m + 1, Last[l]]], n}]]]; le[x_, y_] := Module[{i}, For[i = 1, i <= Length[x], i++, If[x[[i]] > y[[i]] , Return[False]]]; True]; T[n_] := T[n] = Module[{l}, l = d[n, {}]; Table[Sum[If[le[l[[j]], l[[i]]], 1, 0], {i, j, Length[l]}], {j, 1, Length[l]}]]; Table[T[n], {n, 0, 6}] // Flatten (* Jean-François Alcover, Feb 01 2017, after Alois P. Heinz *)
A194091
The number of labeled biconnected squaregraphs with perimeter 2*n.
Original entry on oeis.org
1, 1, 3, 14, 82, 554, 4132, 33154, 281459, 2499523
Offset: 1
[See A194090 for the definition of "labeled squaregraph".] For n=4 the a(4)=14 labeled biconnected squaregraphs of perimeter 8 are the straight tromino (with 4 labelings), the L tromino (with 8), and the square tetromino (with 2).
A138349
Moment sequence of tr(A) in USp(4).
Original entry on oeis.org
1, 0, 1, 0, 3, 0, 14, 0, 84, 0, 594, 0, 4719, 0, 40898, 0, 379236, 0, 3711916, 0, 37975756, 0, 403127256, 0, 4415203280, 0, 49671036900, 0, 571947380775, 0, 6721316278650, 0, 80419959684900, 0, 977737404590100, 0, 12058761323277900, 0
Offset: 0
a(4)=3 because E[(tr(A))^4] = 3 for a random matrix A in USp(4).
a(4)=3 because A126120(4)A126120(8)-A126120(6)^2 = 2*14-5*5 = 3.
a(4)=3 because EEWW, EWEW and ENSW are the returning walks on Z^2 with x>=y>=0.
- Bostan, Alin ; Chyzak, Frédéric; van Hoeij, Mark; Kauers, Manuel; Pech, Lucien Hypergeometric expressions for generating functions of walks with small steps in the quarter plane. Eur. J. Comb. 61, 242-275 (2017), Table 3
- David J. Grabiner and Peter Magyar, Random walks in Weyl chambers and the decomposition of tensor powers, Journal of Algebraic Combinatorics, vol. 2 (1993), no. 3, pp 239-260.
- Kiran S. Kedlaya and Andrew V. Sutherland, Hyperelliptic curves, L-polynomials and random matrices, arXiv:0803.4462 [math.NT], 2008-2010.
A248152
a(n) = 48 * 4^n * (2*n-1)!! * (2*n+3)!! / ((n+2)! * (n+4)!).
Original entry on oeis.org
3, 4, 14, 72, 462, 3432, 28314, 252824, 2401828, 23984688, 249554968, 2687515040, 29802622140, 338931781200, 3940081956450, 46695460462200, 562939717794300, 6890720756158800, 85507580292334200, 1074244300649863200, 13647785546892580200, 175166360584464768480
Offset: 0
G.f. = 3 + 4*x + 14*x^2 + 72*x^3 + 462*x^4 + 3432*x^5 + 28314*x^6 + ...
-
[24*Factorial(2*n)*Factorial(2*n+3)/(Factorial(n)*Factorial(n+1)* Factorial(n+2)*Factorial(n+4)): n in [0..30]]; // G. C. Greubel, Aug 04 2018
-
a[ n_] := 48 4^n (2 n - 1)!! * (2 n + 3)!! / ((n + 2)! (n + 4)!);
-
{a(n) = if( n<0, if( n<-2, 0, [-2, 1/2][-n]), 24 * (2*n)! * (2*n+3)! / ( n! * (n+1)! * (n+2)! * (n+4)! ))};
A338727
a(n) = C(n+1)^2 - 2*C(n+1)*C(n) + C(n)^2, where C() is a Catalan number.
Original entry on oeis.org
1, 1, 9, 81, 784, 8100, 88209, 1002001, 11778624, 142420356, 1763160100, 22268399076, 286105172544, 3730846771600, 49286086364025, 658580586980625, 8890060997894400, 121099761397088100, 1663131325207760100, 23009839285003272900, 320486852887891560000, 4491184012659823424400, 63291012091734041000100
Offset: 0
Equals
A000245(n) squared for n >= 1.
A355281
Number of pairs of nested Dyck paths from (0,0) to (n,n) such that the upper path only touches the diagonal at its endpoints.
Original entry on oeis.org
1, 1, 2, 9, 55, 400, 3266, 28999, 274537, 2734885, 28401315, 305352146, 3380956839, 38394091370, 445702108969, 5274935433915, 63507021523471, 776347636736261, 9621502184089320, 120726786082609207, 1531938384684090884, 19639252409244653785, 254143269904958943103, 3317204158078663935592
Offset: 0
-
b:= proc(n) option remember; `if`(n=0, 1,
b(n-1)*((4*n)^2-4)/(n+2)/(n+3))
end:
a:= proc(n) option remember;
b(n)-add(a(n-i)*b(i), i=1..n-1)
end:
seq(a(n), n=0..23); # Alois P. Heinz, Jun 26 2022
-
nmax = 23;
c = CatalanNumber;
B[x_] = Sum[(c[n] c[n+2] - c[n+1]^2) x^n, {n, 0, nmax}];
CoefficientList[2 - 1/B[x] + O[x]^(nmax+1), x] (* Jean-François Alcover, Jul 06 2022 *)
Comments