cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A005700 a(n) = C(n)*C(n+2) - C(n+1)^2 where C() are the Catalan numbers A000108.

Original entry on oeis.org

1, 1, 3, 14, 84, 594, 4719, 40898, 379236, 3711916, 37975756, 403127256, 4415203280, 49671036900, 571947380775, 6721316278650, 80419959684900, 977737404590100, 12058761323277900, 150656212896017400, 1904342169333848400, 24328661192286773400, 313839729380499376860
Offset: 0

Views

Author

Keywords

Comments

The old name was: Number of closed walks of 2n unit steps north, east, south, or west starting and ending at the origin and confined to the first octant.
Image of Catalan numbers (A000108) under "little Hankel" transform that sends [c_0, c_1, ...] to [d_0, d_1, ...] where d_n = c_n^2 - c_{n+1}*c_{n-1}.
The Niederhausen reference counts various classes of first octant paths by number of contacts with the line y=x. - David Callan, Sep 18 2007
In Sloane and Plouffe (1995) this was incorrectly described as "Dyck paths".
Also matchings avoiding a certain pattern (see J. Bloom and S. Elizalde). - N. J. A. Sloane, Jan 02 2013
From Bruce Westbury, Aug 22 2013: (Start)
a(n) is also the number of nested pairs of Dyck paths of length n starting and ending at the origin;
a(n) is also the number of 3-noncrossing perfect matchings on 2n points;
a(n) is also the number of 2-triangulations on n-gon;
a(n) is also the dimension of the invariant subspace of 2n-th tensor power of the spin representation of Spin(5);
a(n) is also the dimension of the invariant subspace of 2n-th tensor power of the defining representation of Sp(4). (End)
a(-1) = -3/2, a(-2) = -1/4 makes some formulas true for all n in Z. - Michael Somos, Oct 02 2014
a(n) is the number of uniquely sorted permutations of length 2n+1 that avoid the pattern 312. - Colin Defant, Jun 08 2019

Examples

			Example: a(2)=3 counts EWEW, EEWW, ENSW.
G.f. = 1 + x + 3*x^2 + 14*x^3 + 84*x^4 + 594*x^5 + 4719*x^6 + 40898*x^7 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A column of the triangle in A179898. A diagonal of the triangle in A185249.
Row sums of A193691, A193692. - Alois P. Heinz, Aug 03 2011
See A138349 for another version.

Programs

  • LiE
    p_tensor(2*n,[0,1],B2)|[0,0]
    
  • LiE
    p_tensor(2*n,[1,0],C2)|[0,0]
    
  • Magma
    [6*Factorial(2*n)*Factorial(2*n+2)/(Factorial(n)*Factorial(n+1)* Factorial(n+2)*Factorial(n+3)): n in [0..25]]; // Vincenzo Librandi, Aug 04 2011
    
  • Mathematica
    CoefficientList[ Series[ HypergeometricPFQ[ {1, 1/2, 3/2}, {3, 4}, 16 x], {x, 0, 19}], x]
    a[ n_] := If[ n < 1, Boole[n == 0], Det[ Table[ Binomial[i + 1, j - i + 2], {i, n}, {j, n}]]]; (* Michael Somos, Feb 25 2014 *) (* slight modification of David Callan formula *)
    a[ n_] := 12 * 4^n * (2*n-1)!! * (2*n+1)!! / ((n+2)! * (n+3)!); (* Michael Somos, Oct 02 2014 *)
  • PARI
    a(n)=6*binomial(2*n+2,n)*(2*n)!/(n+1)!/(n+3)! \\ Charles R Greathouse IV, Aug 04 2011
    
  • PARI
    {a(n) = if( n<0, if( n<-2, 0, [-3/2, -1/4][-n]), 6 * (2*n)! * (2*n+2)! / (n! * (n+1)! * (n+2)! * (n+3)!))}; /* Michael Somos, Oct 02 2014 */

Formula

G.f.: 3F2( [ 1, 1/2, 3/2 ]; [ 3, 4 ]; 16 x ).
a(n) = 6*(2*n)!*(2*n+2)!/(n!*(n+1)!*(n+2)!*(n+3)!) (Mihailovs).
a(n) = Det[Table[binomial[i+1, j-i+2], {i, 1, n}, {j, 1, n}]]. - David Callan, Jul 20 2005
a(n) = b(n)b(n+1)/6 where b(n) is the superballot number A007054. - David Callan, Feb 01 2007
a(n) = A000108(n)*A000108(n+2) - A000108(n+1)^2. - Philippe Deléham, Apr 11 2007
G.f.: (1 + 6*x - hypergeom([-1/2,-3/2],[2],16*x))/(4*x^2). - Mark van Hoeij, Nov 02 2009
From Michael Somos, Oct 02 2014: (Start)
a(n) = 12 * 4^n * (2*n-1)!! * (2*n+1)!! / ((n+2)! * (n+3)!).
D-finite with recurrence 0 = a(n) * 4*(2*n+1)*(2*n+3) - a(n+1) * (n+3)*(n+4) for all n in Z.
0 = a(n)*(+65536*a(n+2) - 72192*a(n+3) + 10296*a(n+4)) + a(n+1)*(-1536*a(n+2) - 1632*a(n+3) - 282*a(n+4)) + a(n+2)*(+40*a(n+2) - 6*a(n+3) + a(n+4)) for all n in Z.
0 = a(n)^2*a(n+2)*(+1792*a(n+1) - 882*a(n+2)) + a(n)*a(n+1)^2*(+768*a(n+1) + 580*a(n+2)) + 7*a(n)*a(n+1)*a(n+2)^2 +a(n+1)^3*(-18*a(n+1) + 3*a(n+2)) for all n in Z. (End)
a(n) ~ 3 * 2^(4*n+3) / (Pi * n^5). - Vaclav Kotesovec, Feb 10 2015
From Peter Bala, Feb 22 2023: (Start)
a(n) = (12*(2*n - 1)/((n + 1)(n + 2)(n + 3))) * Catalan(n-1)*Catalan(n+1) for n >= 1.
a(n) = Product_{1 <= i <= j <= n-1} (i + j + 4)/(i + j).
a(n) = (1/2^(n-1)) * Product_{1 <= i <= j <= n-1} (i + j + 4)/(i + j - 1) for n >= 1. (End)
Sum_{n>=0} a(n)/16^n = 88 - 4096/(15*Pi). - Amiram Eldar, May 06 2023

Extensions

More terms from James Sellers, Dec 24 1999
Corrected by Vladeta Jovovic, May 23 2004
Better definition from David Callan, Sep 18 2007
Definition simplified by N. J. A. Sloane, Nov 30 2020

A138540 Moment sequence of tr(A) in USp(6).

Original entry on oeis.org

1, 0, 1, 0, 3, 0, 15, 0, 104, 0, 909, 0, 9449, 0, 112398, 0, 1489410, 0, 21562086, 0, 336086022, 0, 5577242292, 0, 97671172836, 0, 1792348213025, 0, 34268124834495, 0, 679376016769260, 0, 13911118850603610, 0, 293220749128031010, 0
Offset: 0

Views

Author

Andrew V. Sutherland, Mar 24 2008, Apr 01 2008

Keywords

Comments

If A is a random matrix in the compact group USp(6) (6 X 6 complex matrices which are unitary and symplectic), then a(n) = E[(tr(A))^n] is the n-th moment of the trace of A.
The multiplicity of the trivial representation in the n-th tensor power of the standard representation of USp(6).
Number of returning walks of length n on a cubic lattice remaining in the chamber x >= y >= z >= 0.
Under a generalized Sato-Tate conjecture, this is the moment sequence of the distribution of unitarized Frobenius traces a_p/sqrt(p) (as p varies), for almost all genus 3 curves.
For genus g the mgf is A(z) = det[F_{i+j-2}(z)], 1<=i,j<=g, where F_m(z) = Sum_j binomial(m,j)(I_{2j-m}(2z)-I_{2j-m+2}) and I_k(z) is the hyperbolic Bessel function (of the first kind) of order k.
Dimension of space of invariant tensors in n-th tensor power of natural representation of Sp(6). - Bruce Westbury, Dec 05 2014

Examples

			a(4)=3 because E[(tr(A))^4] = 3 for a random matrix A in USp(6).
		

Crossrefs

Cf. A138349.

Programs

  • Mathematica
    F[m_][z_] := Sum[Binomial[m, j] (BesselI[2j-m, 2z] - BesselI[2j-m+2, 2z]), {j, 0, m}];
    A[z_] := Det[Table[F[i+j-2][z], {i, 1, 3}, {j, 1, 3}]];
    a[n_] := a[n] = Derivative[n][A][0];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 35}] (* Jean-François Alcover, Feb 17 2019 *)

Formula

mgf: A(z) = det[F_{i+j-2}(z)], 1<=i,j<=3, where F_m(z) = Sum_j binomial(m,j)(I_{2j-m}(2z)-I_{2j-m+2}(2z)) and I_k(z) is the hyperbolic Bessel function (of the first kind) of order k.

A138350 Moment sequence of tr(A^2) in USp(4).

Original entry on oeis.org

1, -1, 3, -6, 20, -50, 175, -490, 1764, -5292, 19404, -60984, 226512, -736164, 2760615, -9202050, 34763300, -118195220, 449141836, -1551580888, 5924217936, -20734762776, 79483257308, -281248448936, 1081724803600, -3863302870000, 14901311070000, -53644719852000
Offset: 0

Views

Author

Andrew V. Sutherland, Mar 16 2008

Keywords

Comments

If A is a random matrix in the compact group USp(4) (4 X 4 complex matrices which are unitary and symplectic), then a(n) = E[(tr(A^2))^n] is the n-th moment of the trace of A^2. See A138351 for central moments.

Examples

			a(5) = -50 because E[(tr(A^2))^5] = -50 for a random matrix A in USp(4).
a(5) = A126120(5)*A138364(6)-A138364(5)*A126120(6) = 0*0-10*5 = -50.
		

Crossrefs

A signed version of A005558, which is the main entry for this sequence.

Programs

  • Mathematica
    a[n_] := 1/2*Binomial[2*Floor[n/2]+1, Floor[n/2]+1]*CatalanNumber[1/2*(n+Mod[n, 2])]*(Mod[n, 2]+2); Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Mar 13 2014 *)

Formula

a(n)=(1/2)Integral_{x=0..Pi,y=0..Pi}(2cos(2x)+2cos(2y))^n(2cos(x)-2cos(y))^2(2/Pi*sin^2(x))(2/Pi*sin^2(y))dxdy. a(n)=A126120(n)A138364(n+1)-A138364(n)A126120(n+1)
Conjectured e.g.f. BesselI[1,2x](BesselI[0,2x]-BesselI[1,2x])/x. - Benjamin Phillabaum, Feb 25 2011

A138356 Moment sequence of t^2 coefficient in det(tI-A) for random matrix A in USp(4).

Original entry on oeis.org

1, 1, 2, 4, 10, 27, 82, 268, 940, 3476, 13448, 53968, 223412, 949535, 4128594, 18310972, 82645012, 378851428, 1760998280, 8288679056, 39457907128, 189784872428, 921472827272, 4512940614960, 22279014978544, 110797225212112
Offset: 0

Views

Author

Andrew V. Sutherland, Mar 17 2008

Keywords

Comments

Let the random variable X be the coefficient of t^2 in the characteristic polynomial det(tI-A) of a random matrix in USp(4) (4 X 4 complex matrices that are unitary and symplectic). Then a(n) = E[X^n].
Let L_p(T) be the L-polynomial (numerator of the zeta function) of a genus 2 curve C. Under a generalized Sato-Tate conjecture, for almost all C,
a(n) is the n-th moment of the coefficient of t^2 in L_p(t/sqrt(p)), as p varies.
See A095922 for central moments.

Examples

			a(3) = 4 because E[X^3] = 4 for X the t^2 coeff of det(tI-A) in USp(4).
a(3) = 1*2^3*(1*1-0^2) + 3*2^2*(0*0-1^2) + 3*2^1*(1*2-0^2) + 1*2^0*(0*0-2^2) = 8 - 12 + 12 - 4 = 4.
		

Crossrefs

Formula

a(n) = (1/2)Integral_{x=0..Pi,y=0..Pi}(4cos(x)cos(y)+2)^n(2cos(x)-2cos(y))^2(2/Pi*sin^2(x))(2/Pi*sin^2(y))dxdy.
a(n) = Sum_{i=0..n}binomial(n,i)2^{n-i}*(A126120(i)*A126120(i+2)-A126120(i+1)^2).
Showing 1-4 of 4 results.