cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A186232 Row sums of A185249.

Original entry on oeis.org

1, 1, 2, 3, 7, 18, 58, 221, 1055, 6485, 50536, 478836, 5440177, 76190368, 1363369202, 31071197441, 868697997215, 29108097152159, 1188937117381254, 61492149340335133, 4073478163425582443, 335184988593624746984, 33170032360612393972748
Offset: 0

Views

Author

N. J. A. Sloane, Feb 15 2011

Keywords

Comments

From Vaclav Kotesovec, Aug 27 2023: (Start)
a(n)^(1/n^2) tends to 1.1130228... (based on the first 750 terms).
Conjecture: the constant is the same as in A343032. (End)

Programs

  • Maple
    with(LinearAlgebra):
    ctln:= proc(n) option remember; binomial(2*n, n)/(n+1) end:
    T := proc(n,k)
           if n=k then 1
         elif irem(n+k,2)=1 then 0
         else Determinant(Matrix((n-k)/2, (i, j)-> ctln(i+j-1+k)))
           fi
         end:
    a:= n-> add(T(n,k), k=0..n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Feb 15 2011
  • Mathematica
    t[n_, n_] = 1; t[n_, k_] /; Mod[n+k, 2] == 1 = 0; t[n_, k_] :=  Array[CatalanNumber[#1 + #2 - 1 + k]&, {(n-k)/2, (n-k)/2}] // Det; a[n_] := Sum[t[n, k], {k, 0, n}]; Table[a[n], {n, 0, 22} ]  (* Jean-François Alcover, Mar 19 2014, after Alois P. Heinz *)

Extensions

Corrected and extended by Alois P. Heinz, Feb 15 2011

A005700 a(n) = C(n)*C(n+2) - C(n+1)^2 where C() are the Catalan numbers A000108.

Original entry on oeis.org

1, 1, 3, 14, 84, 594, 4719, 40898, 379236, 3711916, 37975756, 403127256, 4415203280, 49671036900, 571947380775, 6721316278650, 80419959684900, 977737404590100, 12058761323277900, 150656212896017400, 1904342169333848400, 24328661192286773400, 313839729380499376860
Offset: 0

Views

Author

Keywords

Comments

The old name was: Number of closed walks of 2n unit steps north, east, south, or west starting and ending at the origin and confined to the first octant.
Image of Catalan numbers (A000108) under "little Hankel" transform that sends [c_0, c_1, ...] to [d_0, d_1, ...] where d_n = c_n^2 - c_{n+1}*c_{n-1}.
The Niederhausen reference counts various classes of first octant paths by number of contacts with the line y=x. - David Callan, Sep 18 2007
In Sloane and Plouffe (1995) this was incorrectly described as "Dyck paths".
Also matchings avoiding a certain pattern (see J. Bloom and S. Elizalde). - N. J. A. Sloane, Jan 02 2013
From Bruce Westbury, Aug 22 2013: (Start)
a(n) is also the number of nested pairs of Dyck paths of length n starting and ending at the origin;
a(n) is also the number of 3-noncrossing perfect matchings on 2n points;
a(n) is also the number of 2-triangulations on n-gon;
a(n) is also the dimension of the invariant subspace of 2n-th tensor power of the spin representation of Spin(5);
a(n) is also the dimension of the invariant subspace of 2n-th tensor power of the defining representation of Sp(4). (End)
a(-1) = -3/2, a(-2) = -1/4 makes some formulas true for all n in Z. - Michael Somos, Oct 02 2014
a(n) is the number of uniquely sorted permutations of length 2n+1 that avoid the pattern 312. - Colin Defant, Jun 08 2019

Examples

			Example: a(2)=3 counts EWEW, EEWW, ENSW.
G.f. = 1 + x + 3*x^2 + 14*x^3 + 84*x^4 + 594*x^5 + 4719*x^6 + 40898*x^7 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A column of the triangle in A179898. A diagonal of the triangle in A185249.
Row sums of A193691, A193692. - Alois P. Heinz, Aug 03 2011
See A138349 for another version.

Programs

  • LiE
    p_tensor(2*n,[0,1],B2)|[0,0]
    
  • LiE
    p_tensor(2*n,[1,0],C2)|[0,0]
    
  • Magma
    [6*Factorial(2*n)*Factorial(2*n+2)/(Factorial(n)*Factorial(n+1)* Factorial(n+2)*Factorial(n+3)): n in [0..25]]; // Vincenzo Librandi, Aug 04 2011
    
  • Mathematica
    CoefficientList[ Series[ HypergeometricPFQ[ {1, 1/2, 3/2}, {3, 4}, 16 x], {x, 0, 19}], x]
    a[ n_] := If[ n < 1, Boole[n == 0], Det[ Table[ Binomial[i + 1, j - i + 2], {i, n}, {j, n}]]]; (* Michael Somos, Feb 25 2014 *) (* slight modification of David Callan formula *)
    a[ n_] := 12 * 4^n * (2*n-1)!! * (2*n+1)!! / ((n+2)! * (n+3)!); (* Michael Somos, Oct 02 2014 *)
  • PARI
    a(n)=6*binomial(2*n+2,n)*(2*n)!/(n+1)!/(n+3)! \\ Charles R Greathouse IV, Aug 04 2011
    
  • PARI
    {a(n) = if( n<0, if( n<-2, 0, [-3/2, -1/4][-n]), 6 * (2*n)! * (2*n+2)! / (n! * (n+1)! * (n+2)! * (n+3)!))}; /* Michael Somos, Oct 02 2014 */

Formula

G.f.: 3F2( [ 1, 1/2, 3/2 ]; [ 3, 4 ]; 16 x ).
a(n) = 6*(2*n)!*(2*n+2)!/(n!*(n+1)!*(n+2)!*(n+3)!) (Mihailovs).
a(n) = Det[Table[binomial[i+1, j-i+2], {i, 1, n}, {j, 1, n}]]. - David Callan, Jul 20 2005
a(n) = b(n)b(n+1)/6 where b(n) is the superballot number A007054. - David Callan, Feb 01 2007
a(n) = A000108(n)*A000108(n+2) - A000108(n+1)^2. - Philippe Deléham, Apr 11 2007
G.f.: (1 + 6*x - hypergeom([-1/2,-3/2],[2],16*x))/(4*x^2). - Mark van Hoeij, Nov 02 2009
From Michael Somos, Oct 02 2014: (Start)
a(n) = 12 * 4^n * (2*n-1)!! * (2*n+1)!! / ((n+2)! * (n+3)!).
D-finite with recurrence 0 = a(n) * 4*(2*n+1)*(2*n+3) - a(n+1) * (n+3)*(n+4) for all n in Z.
0 = a(n)*(+65536*a(n+2) - 72192*a(n+3) + 10296*a(n+4)) + a(n+1)*(-1536*a(n+2) - 1632*a(n+3) - 282*a(n+4)) + a(n+2)*(+40*a(n+2) - 6*a(n+3) + a(n+4)) for all n in Z.
0 = a(n)^2*a(n+2)*(+1792*a(n+1) - 882*a(n+2)) + a(n)*a(n+1)^2*(+768*a(n+1) + 580*a(n+2)) + 7*a(n)*a(n+1)*a(n+2)^2 +a(n+1)^3*(-18*a(n+1) + 3*a(n+2)) for all n in Z. (End)
a(n) ~ 3 * 2^(4*n+3) / (Pi * n^5). - Vaclav Kotesovec, Feb 10 2015
From Peter Bala, Feb 22 2023: (Start)
a(n) = (12*(2*n - 1)/((n + 1)(n + 2)(n + 3))) * Catalan(n-1)*Catalan(n+1) for n >= 1.
a(n) = Product_{1 <= i <= j <= n-1} (i + j + 4)/(i + j).
a(n) = (1/2^(n-1)) * Product_{1 <= i <= j <= n-1} (i + j + 4)/(i + j - 1) for n >= 1. (End)
Sum_{n>=0} a(n)/16^n = 88 - 4096/(15*Pi). - Amiram Eldar, May 06 2023

Extensions

More terms from James Sellers, Dec 24 1999
Corrected by Vladeta Jovovic, May 23 2004
Better definition from David Callan, Sep 18 2007
Definition simplified by N. J. A. Sloane, Nov 30 2020

A006149 Number of 3-tuples (p_1, p_2, p_3) of Dyck paths of semilength n, such that each p_i is never below p_{i-1}.

Original entry on oeis.org

1, 1, 4, 30, 330, 4719, 81796, 1643356, 37119160, 922268360, 24801924512, 713055329720, 21706243125300, 694280570551875, 23188541161342500, 804601696647424500, 28880966163870711000, 1068595748063216307000, 40631980618055892780000, 1583603339463794983230000
Offset: 0

Views

Author

Keywords

Comments

a(n) is the determinant of the 3 X 3 Hankel matrix [a_0, a_1, a_2 ; a_1, a_2, a_3 ; a_2, a_3, a_4] with a_j=A000108(n+j). - Philippe Deléham, Apr 12 2007
Third subdiagonal in A123352, equivalent to the 6th subdiagonal in A185249, its "aerated" version with additional subdiagonals entirely filled with zeros. - R. J. Mathar, Feb 18 2011

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 183).
  • M. de Sainte-Catherine, Couplages et Pfaffiens en Combinatoire, Physique et Informatique. Ph.D Dissertation, Université Bordeaux I, 1983.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of A078920.
Diagonal of A123352 and of A185249.

Programs

  • GAP
    F:=Factorial;; List([0..20], n-> F(6)*F(2*n)*F(2*n+2)*F(2*n+4) /Product([0..5], j-> F(n+j) ) ); # G. C. Greubel, Aug 28 2019
  • Magma
    F:=Factorial; [F(6)*F(2*n)*F(2*n+2)*F(2*n+4)/&*[F(n+j): j in [0..5]] : n in [0..20]]; // G. C. Greubel, Aug 28 2019
    
  • Maple
    seq(6!*(2*n)!*(2*n+2)!*(2*n+4)!/mul((n+j)!, j=0..5), n=0..20); # G. C. Greubel, Aug 28 2019
  • Mathematica
    Table[6!*(2*n)!*(2*n+2)!*(2*n+4)!/Product[(n+j)!, {j,0,5}], {n,0,20}] (* G. C. Greubel, Aug 28 2019 *)
  • PARI
    vector(20, n, 6!*(2*n-2)!*(2*n)!*(2*n+2)!/prod(j=0,5, (n+j-1)!) ) \\ G. C. Greubel, Aug 28 2019
    
  • Sage
    f=factorial; [f(6)*f(2*n)*f(2*n+2)*f(2*n+4)/product(f(n+j) for j in (0..5)) for n in (0..20)] # G. C. Greubel, Aug 28 2019
    

Formula

G.f.: Hypergeometric 4_F_3 ( [ 1, 1/2, 5/2, 3/2 ]; [ 4, 5, 6 ]; 64 x ).
a(n) = Det[Table[binomial[i+2, j-i+3], {i, 1, n}, {j, 1, n}]]. - David Callan, Jul 20 2005
a(n) = 720 (2*n)! (2*n+2)! (2*n+4)! / (n! (n+1)! (n+2)! (n+3)! (n+4)! (n+5)!). - Steven Finch, Mar 30 2008
(n+5)*(n+4)*(n+3)*a(n) -8*(2*n+3)*(2*n+1)*(2*n-1)*a(n-1)=0. - R. J. Mathar, Feb 27 2018
From Peter Bala, Feb 22 2023: (Start)
a(n) = Product_{1 <= i <= j <= n-1} (i + j + 6)/(i + j).
a(n) = (1/2^(n-1)) * Product_{1 <= i <= j <= n-1} (i + j + 6)/(i + j - 1) for n >= 1. (End)
a(n) ~ 45 * 2^(6*n + 10) / (Pi^(3/2) * n^(21/2)). - Vaclav Kotesovec, Feb 23 2023

Extensions

Name clarified by Alois P. Heinz, Feb 24 2023

A006150 Number of 4-tuples (p_1, p_2, ..., p_4) of Dyck paths of semilength n, such that each p_i is never below p_{i-1}.

Original entry on oeis.org

1, 1, 5, 55, 1001, 26026, 884884, 37119160, 1844536720, 105408179176, 6774025632340, 481155055944150, 37259723952950625, 3111129272480118750, 277587585343361452500, 26268551497229678505000, 2620002484114994890890000, 273961129317241857069150000, 29896847445736985488399170000
Offset: 0

Views

Author

Keywords

Comments

a(n) is the determinant of the 4 X 4 Hankel matrix [a_0, a_1, a_2, a_3 ; a_1, a_2, a_3, a_4 ; a_2, a_3, a_4, a_5 ; a_3, a_4, a_5, a_6] with a_j=A000108(n+j). - Philippe Deléham, Apr 12 2007

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 183).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=4 of A078920.
Diagonal of A123352 and of A185249.

Programs

  • Maple
    with(LinearAlgebra):
    ctln:= proc(n) option remember; binomial(2*n, n)/ (n+1) end:
    a:= n-> Determinant(Matrix(4, (i, j)-> ctln(i+j-2+n))):
    seq(a(n), n=0..20);  # Alois P. Heinz, Sep 10 2008, revised, Sep 05 2019
  • Mathematica
    Join[{1},Table[Det[Table[Binomial[i+3,j-i+4],{i,n},{j,n}]],{n,20}]] (* Harvey P. Dale, Jul 31 2012 *)
    Table[3628800 * (2*n)! * (2*(n+1))! * (2*(n+2))! * (2*(n+3))! / (n! * (n+1)! * (n+2)! * (n+3)! * (n+4)! * (n+5)! * (n+6)! * (n+7)!),{n,0,20}] (* Vaclav Kotesovec, Mar 20 2014 *)

Formula

a(n) = Det[Table[binomial[i+3, j-i+4], {i, 1, n}, {j, 1, n}]]. - David Callan, Jul 20 2005
From Vaclav Kotesovec, Mar 20 2014: (Start)
Recurrence: (n+4)*(n+5)*(n+6)*(n+7)*a(n) = 16*(2*n-1)*(2*n+1)*(2*n+3)*(2*n+5)*a(n-1).
a(n) = 3628800 * (2*n)! * (2*(n+1))! * (2*(n+2))! * (2*(n+3))! / (n! * (n+1)! * (n+2)! * (n+3)! * (n+4)! * (n+5)! * (n+6)! * (n+7)!).
a(n) ~ 14863564800 * 256^n / (Pi^2 * n^18). (End)
From Peter Bala, Feb 22 2023: (Start)
a(n) = Product_{1 <= i <= j <= n-1} (i + j + 8)/(i + j).
a(n) = (1/2^(n-1)) * Product_{1 <= i <= j <= n-1} (i + j + 8)/(i + j - 1) for n >= 1. (End)
E.g.f.: hypergeom([1/2, 3/2, 5/2, 7/2], [5, 6, 7, 8], 256*x). - Stefano Spezia, Dec 09 2023

Extensions

More terms from Alois P. Heinz, Sep 10 2008
Name clarified by Alois P. Heinz, Feb 24 2023

A006151 Number of 5-tuples (p_1, p_2, ..., p_5) of Dyck paths of semilength n, such that each p_i is never below p_{i-1}.

Original entry on oeis.org

1, 1, 6, 91, 2548, 111384, 6852768, 553361016, 55804330152, 6774025632340, 962310111888300, 156490840602392625, 28622389306817092500, 5804104057179375825000, 1289547073500366035700000, 310827567433642575691950000, 80604345356574686019872460000
Offset: 0

Views

Author

Keywords

Comments

a(n) is the determinant of the 5 X 5 Hankel matrix [a_0, a_1, a_2, a_3, a_4 ; a_1, a_2, a_3, a_4, a_5 ; a_2, a_3, a_4, a_5, a_6 ; a_3, a_4, a_5, a_6, a_7 ; a_4, a_5, a_6, a_7, a_8] with a_j=A000108(n+j). - Philippe Deléham, Apr 12 2007

References

  • M. de Sainte-Catherine, Couplages et Pfaffiens en Combinatoire, Physique et Informatique. Ph.D Dissertation, Université Bordeaux I, 1983.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=5 of A078920.
Diagonal of A123352 and of A185249.

Programs

  • Maple
    with(linalg): ctln:= proc(n) option remember; binomial(2*n,n)/(n+1) end: a:= n-> det(Matrix(5, (i,j)-> ctln(i+j-2+n))): seq(a(n), n=0..20); # Alois P. Heinz, Sep 10 2008
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1,
           32*mul((2*(n-i)+7)/(n+9-i), i=0..4)*a(n-1))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 03 2014
  • Mathematica
    a[n_] := Det[Array[CatalanNumber[#1 + #2 - 2 + n]&, {5, 5}]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 03 2014, after Alois P. Heinz *)
    Table[1316818944000 * (2*n)! * (2*(n+1))! * (2*(n+2))! * (2*(n+3))! * (2*(n+4))! / (n! * (n+1)! * (n+2)! * (n+3)! * (n+4)! * (n+5)! * (n+6)! * (n+7)! * (n+8)! * (n+9)!),{n,0,20}] (* Vaclav Kotesovec, Mar 20 2014 *)

Formula

From Vaclav Kotesovec, Mar 20 2014: (Start)
Recurrence: (n+5)*(n+6)*(n+7)*(n+8)*(n+9)*a(n) = 32*(2*n-1)*(2*n+1)*(2*n+3)*(2*n+5)*(2*n+7)*a(n-1).
a(n) = 1316818944000 * (2*n)! * (2*(n+1))! * (2*(n+2))! * (2*(n+3))! * (2*(n+4))! / (n! * (n+1)! * (n+2)! * (n+3)! * (n+4)! * (n+5)! * (n+6)! * (n+7)! * (n+8)! * (n+9)!).
a(n) ~ 1380784741023744000 * 1024^n / (Pi^(5/2) * n^(55/2)). (End)
From Peter Bala, Feb 22 2023: (Start)
a(n) = Product_{1 <= i <= j <= n-1} (i + j + 10)/(i + j).
a(n) = (1/2^(n-1)) * Product_{1 <= i <= j <= n-1} (i + j + 10)/(i + j - 1) for n >= 1. (End)

Extensions

More terms from Alois P. Heinz, Sep 10 2008
Name clarified by Alois P. Heinz, Feb 24 2023
Showing 1-5 of 5 results.