cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A005700 a(n) = C(n)*C(n+2) - C(n+1)^2 where C() are the Catalan numbers A000108.

Original entry on oeis.org

1, 1, 3, 14, 84, 594, 4719, 40898, 379236, 3711916, 37975756, 403127256, 4415203280, 49671036900, 571947380775, 6721316278650, 80419959684900, 977737404590100, 12058761323277900, 150656212896017400, 1904342169333848400, 24328661192286773400, 313839729380499376860
Offset: 0

Views

Author

Keywords

Comments

The old name was: Number of closed walks of 2n unit steps north, east, south, or west starting and ending at the origin and confined to the first octant.
Image of Catalan numbers (A000108) under "little Hankel" transform that sends [c_0, c_1, ...] to [d_0, d_1, ...] where d_n = c_n^2 - c_{n+1}*c_{n-1}.
The Niederhausen reference counts various classes of first octant paths by number of contacts with the line y=x. - David Callan, Sep 18 2007
In Sloane and Plouffe (1995) this was incorrectly described as "Dyck paths".
Also matchings avoiding a certain pattern (see J. Bloom and S. Elizalde). - N. J. A. Sloane, Jan 02 2013
From Bruce Westbury, Aug 22 2013: (Start)
a(n) is also the number of nested pairs of Dyck paths of length n starting and ending at the origin;
a(n) is also the number of 3-noncrossing perfect matchings on 2n points;
a(n) is also the number of 2-triangulations on n-gon;
a(n) is also the dimension of the invariant subspace of 2n-th tensor power of the spin representation of Spin(5);
a(n) is also the dimension of the invariant subspace of 2n-th tensor power of the defining representation of Sp(4). (End)
a(-1) = -3/2, a(-2) = -1/4 makes some formulas true for all n in Z. - Michael Somos, Oct 02 2014
a(n) is the number of uniquely sorted permutations of length 2n+1 that avoid the pattern 312. - Colin Defant, Jun 08 2019

Examples

			Example: a(2)=3 counts EWEW, EEWW, ENSW.
G.f. = 1 + x + 3*x^2 + 14*x^3 + 84*x^4 + 594*x^5 + 4719*x^6 + 40898*x^7 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A column of the triangle in A179898. A diagonal of the triangle in A185249.
Row sums of A193691, A193692. - Alois P. Heinz, Aug 03 2011
See A138349 for another version.

Programs

  • LiE
    p_tensor(2*n,[0,1],B2)|[0,0]
    
  • LiE
    p_tensor(2*n,[1,0],C2)|[0,0]
    
  • Magma
    [6*Factorial(2*n)*Factorial(2*n+2)/(Factorial(n)*Factorial(n+1)* Factorial(n+2)*Factorial(n+3)): n in [0..25]]; // Vincenzo Librandi, Aug 04 2011
    
  • Mathematica
    CoefficientList[ Series[ HypergeometricPFQ[ {1, 1/2, 3/2}, {3, 4}, 16 x], {x, 0, 19}], x]
    a[ n_] := If[ n < 1, Boole[n == 0], Det[ Table[ Binomial[i + 1, j - i + 2], {i, n}, {j, n}]]]; (* Michael Somos, Feb 25 2014 *) (* slight modification of David Callan formula *)
    a[ n_] := 12 * 4^n * (2*n-1)!! * (2*n+1)!! / ((n+2)! * (n+3)!); (* Michael Somos, Oct 02 2014 *)
  • PARI
    a(n)=6*binomial(2*n+2,n)*(2*n)!/(n+1)!/(n+3)! \\ Charles R Greathouse IV, Aug 04 2011
    
  • PARI
    {a(n) = if( n<0, if( n<-2, 0, [-3/2, -1/4][-n]), 6 * (2*n)! * (2*n+2)! / (n! * (n+1)! * (n+2)! * (n+3)!))}; /* Michael Somos, Oct 02 2014 */

Formula

G.f.: 3F2( [ 1, 1/2, 3/2 ]; [ 3, 4 ]; 16 x ).
a(n) = 6*(2*n)!*(2*n+2)!/(n!*(n+1)!*(n+2)!*(n+3)!) (Mihailovs).
a(n) = Det[Table[binomial[i+1, j-i+2], {i, 1, n}, {j, 1, n}]]. - David Callan, Jul 20 2005
a(n) = b(n)b(n+1)/6 where b(n) is the superballot number A007054. - David Callan, Feb 01 2007
a(n) = A000108(n)*A000108(n+2) - A000108(n+1)^2. - Philippe Deléham, Apr 11 2007
G.f.: (1 + 6*x - hypergeom([-1/2,-3/2],[2],16*x))/(4*x^2). - Mark van Hoeij, Nov 02 2009
From Michael Somos, Oct 02 2014: (Start)
a(n) = 12 * 4^n * (2*n-1)!! * (2*n+1)!! / ((n+2)! * (n+3)!).
D-finite with recurrence 0 = a(n) * 4*(2*n+1)*(2*n+3) - a(n+1) * (n+3)*(n+4) for all n in Z.
0 = a(n)*(+65536*a(n+2) - 72192*a(n+3) + 10296*a(n+4)) + a(n+1)*(-1536*a(n+2) - 1632*a(n+3) - 282*a(n+4)) + a(n+2)*(+40*a(n+2) - 6*a(n+3) + a(n+4)) for all n in Z.
0 = a(n)^2*a(n+2)*(+1792*a(n+1) - 882*a(n+2)) + a(n)*a(n+1)^2*(+768*a(n+1) + 580*a(n+2)) + 7*a(n)*a(n+1)*a(n+2)^2 +a(n+1)^3*(-18*a(n+1) + 3*a(n+2)) for all n in Z. (End)
a(n) ~ 3 * 2^(4*n+3) / (Pi * n^5). - Vaclav Kotesovec, Feb 10 2015
From Peter Bala, Feb 22 2023: (Start)
a(n) = (12*(2*n - 1)/((n + 1)(n + 2)(n + 3))) * Catalan(n-1)*Catalan(n+1) for n >= 1.
a(n) = Product_{1 <= i <= j <= n-1} (i + j + 4)/(i + j).
a(n) = (1/2^(n-1)) * Product_{1 <= i <= j <= n-1} (i + j + 4)/(i + j - 1) for n >= 1. (End)
Sum_{n>=0} a(n)/16^n = 88 - 4096/(15*Pi). - Amiram Eldar, May 06 2023

Extensions

More terms from James Sellers, Dec 24 1999
Corrected by Vladeta Jovovic, May 23 2004
Better definition from David Callan, Sep 18 2007
Definition simplified by N. J. A. Sloane, Nov 30 2020

A078920 Upper triangle of Catalan Number Wall.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 14, 14, 4, 1, 1, 42, 84, 30, 5, 1, 1, 132, 594, 330, 55, 6, 1, 1, 429, 4719, 4719, 1001, 91, 7, 1, 1, 1430, 40898, 81796, 26026, 2548, 140, 8, 1, 1, 4862, 379236, 1643356, 884884, 111384, 5712, 204, 9, 1, 1, 16796, 3711916, 37119160, 37119160, 6852768, 395352, 11628, 285, 10, 1
Offset: 0

Views

Author

Michael Somos, Dec 15 2002

Keywords

Comments

As square array: number of certain symmetric plane partitions, see Forrester/Gamburd paper.
Formatted as a square array, the column k gives the Hankel transform of the Catalan numbers (A000108) beginning at A000108(k); example: Hankel transform of [42, 132, 429, 1430, 4862, ...] is [42, 594, 4719, 26026, 111384, ...] (see A091962). - Philippe Deléham, Apr 12 2007
As square array T(n,k): number of all k-watermelons with a wall of length n. - Ralf Stephan, May 09 2007
Consider "Young tableaux with entries from the set {1,...,n}, strictly increasing in rows and not decreasing in columns. Note that usually the reverse convention between rows and columns is used." de Sainte-Catherine and Viennot (1986) proved that "the number b_{n,k} of such Young tableaux having only columns with an even number of elements and bounded by height p = 2*k" is given by b_{n,k} = Product_{1 <= i <= j <= n} (2*k + i + j)/(i + j)." It turns out that for the current array, T(n,k) = b(n-k,k) for n >= 0 and 0 <= k <= n. - Petros Hadjicostas, Sep 04 2019
As square array, b(k, n) = T(n+k-1, n) for k >= 1 and n >= 1 is the number of n-tuples P = (p_1, p_2, ..., p_n) of non-intersecting lattice paths that lie below the diagonal, such that each p_i starts at (i, i) and ends at (2n+k-i, 2n+k-i). (This is just a different way of looking at n-watermelons with a wall of length k since many of the steps of these paths are going to be fixed while the rest form an n-watermelon. See the Krattenthaler et al. paper.) Equivalently b(k, n) is the number of n-tuples (p_1, p_2, ..., p_n) of Dyck paths, each with 2k steps such that for every i (1 <= i <= n-1), p_i is included in p_{i+1}. A Dyck path p is said to be included in a Dyck path q if the height of path p after j steps is at most the height of path q after j steps, for all j (1 <= j <= 2k). - Farzan Byramji, Jun 17 2021

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k >= 0) starts as follows:
  1;
  1,    1;
  1,    2,      1;
  1,    5,      3,       1;
  1,   14,     14,       4,      1;
  1,   42,     84,      30,      5,      1;
  1,  132,    594,     330,     55,      6,    1;
  1,  429,   4719,    4719,   1001,     91,    7,   1;
  1, 1430,  40898,   81796,  26026,   2548,  140,   8, 1;
  1, 4862, 379236, 1643356, 884884, 111384, 5712, 204, 9, 1;
  ...
		

Crossrefs

Diagonals are A000027, A000330, A006858.
T(2n,n) gives A358597.
Cf. A123352.

Programs

  • Maple
    T:= (n, k)-> mul(mul((i+j+2*k)/(i+j), j=i..n-k), i=1..n-k):
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Sep 04 2019
  • Mathematica
    T[n_, k_] := Product[(2*i+1)!*(2*n-2*i)!/(n-i)!/(n+i+1)!, {i, 0, k-1}]; Table[T[n, k], {n, 1, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 28 2015, adapted from PARI *)
  • PARI
    T(n,k)=if(k<0 || k>n,0,prod(i=0,k-1,(2*i+1)!*(2*n-2*i)!/(n-i)!/(n+i+1)!))
    
  • PARI
    {C(n)=if(n<0,0,(2*n)!/n!/(n+1)!)}; T(n,k)=if(k<0 || k>n,0,matdet(matrix(k,k,i,j,C(i+j-1+n-k))))
    
  • Sage
    def A078920(n,k): return product( binomial(2*n-2*j, n-j)/binomial(n+j+1, n-j) for j in (0..k-1) )
    flattened([[A078920(n,k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Dec 17 2021

Formula

T(n,k) = Product_{i=1..n-k} Product_{j=i..n-k} (i+j+2*k)/(i+j). [corrected by Petros Hadjicostas, Jul 24 2019]
From G. C. Greubel, Dec 17 2021: (Start)
T(n, k) = Product_{j=0..k-1} binomial(2*n-2*j, n-j)/binomial(n+j+1, n-j).
T(n, k) = ((n+1)!/(n-k+1)!)*Product_{j=0..k-1} Catalan(n-j)/binomial(n+j+1, n-j). (End)

Extensions

T(0,0) = 1 prepended by Petros Hadjicostas, Jul 24 2019

A123352 Triangle read by rows, giving Kekulé numbers for certain benzenoids (see the Cyvin-Gutman book for details).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 14, 14, 1, 1, 5, 30, 84, 42, 1, 1, 6, 55, 330, 594, 132, 1, 1, 7, 91, 1001, 4719, 4719, 429, 1, 1, 8, 140, 2548, 26026, 81796, 40898, 1430, 1, 1, 9, 204, 5712, 111384, 884884, 1643356, 379236, 4862, 1
Offset: 0

Views

Author

N. J. A. Sloane, Oct 14 2006

Keywords

Comments

There is another version in A078920. - Philippe Deléham, Apr 12 2007 [In other words, T(n,k) = A078920(n,n-k). - Petros Hadjicostas, Oct 19 2019]

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
  1;
  1, 1;
  1, 2,  1;
  1, 3,  5,    1;
  1, 4, 14,   14,    1;
  1, 5, 30,   84,   42,    1;
  1, 6, 55,  330,  594,  132,   1;
  1, 7, 91, 1001, 4719, 4719, 429, 1;
  ...
		

Crossrefs

Diagonals give A000108, A005700, A006149, A006150, A006151, etc.
Columns include (truncated versions of) A000012 (k=0), A000027 (k=1), A000330 (k=2), A006858 (k=3), and A091962 (k=4).
T(2n,n) gives A358597.
Cf. A078920.

Programs

  • Mathematica
    A123352[n_, k_]:= Product[Binomial[2*n-2*j, n-j]/Binomial[n+j+1, n-j], {j, 0, n-k-1}];
    Table[A123352[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 17 2021 *)
  • Sage
    def A123352(n,k): return product( binomial(2*n-2*j, n-j)/binomial(n+j+1, n-j) for j in (0..n-k-1) )
    flatten([[A123352(n,k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Dec 17 2021

Formula

T(n, n-1) = A000108(n).
T(n, n-2) = A005700(n-1).
T(n, n-3) = A006149(n-2).
T(n, n-4) = A006150(n-3).
T(n, n-5) = A006151(n-4).
Triangle T(n,k) = (-1)^C(k+1,2) * Product{1 <= i <= j <= k} (-2*(n+1)+i+j)/(i+j). - Paul Barry, Jan 22 2009
From G. C. Greubel, Dec 17 2021: (Start)
T(n, k) = Product_{j=0..n-k-1} binomial(2*n-2*j, n-j)/binomial(n+j+1, n-j).
T(n, k) = ((n+1)!/(k+1)!)*Product_{j=0..n-k-1} Catalan(n-j)/binomial(n+j+1, n-j). (End)

Extensions

More terms from Philippe Deléham, Apr 12 2007

A368025 Array read by ascending antidiagonals: A(n,k) is the determinant of the n-th order Hankel matrix of Catalan numbers M(n) whose generic element is given by M(i,j) = A000108(i+j+k) with i,j = 0, ..., n-1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 4, 14, 14, 1, 1, 1, 5, 30, 84, 42, 1, 1, 1, 6, 55, 330, 594, 132, 1, 1, 1, 7, 91, 1001, 4719, 4719, 429, 1, 1, 1, 8, 140, 2548, 26026, 81796, 40898, 1430, 1, 1, 1, 9, 204, 5712, 111384, 884884, 1643356, 379236, 4862, 1
Offset: 0

Views

Author

Stefano Spezia, Dec 08 2023

Keywords

Comments

This array is a variant of the triangles A078920 and A123352 extended to the trivial cases (here for k=0).

Examples

			The array begins:
  1, 1, 1,   1,    1,      1,        1, ...
  1, 1, 2,   5,   14,     42,      132, ...
  1, 1, 3,  14,   84,    594,     4719, ...
  1, 1, 4,  30,  330,   4719,    81796, ...
  1, 1, 5,  55, 1001,  26026,   884884, ...
  1, 1, 6,  91, 2548, 111384,  6852768, ...
  1, 1, 7, 140, 5712, 395352, 41314284, ...
  ...
		

Crossrefs

Cf. A000108 (n=1), A005700 (n=2), A006149 (n=3), A006150 (n=4), A006151 (n=5).
Cf. A000012 (k=0 or k=1 or n=0), A000330, A078920, A091962, A123352, A335857 (k=6).
Cf. A355400, A368026 (permanent), A378112.
Antidiagonal sums give A355503.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(k=0, 1, 2^n*mul(
          (2*(k-i)+2*n-3)/(k+2*n-1-i), i=0..n-1)*A(n, k-1))
        end:
    seq(seq(A(d-k, k), k=0..d), d=0..10);  # Alois P. Heinz, Dec 20 2023
  • Mathematica
    A[n_,k_]:=If[n==0,1,Det[Table[CatalanNumber[i+j+k],{i,0,n-1},{j,0,n-1}]]]; Table[A[n-k,k],{n,0,11},{k,0,n}]//Flatten

Formula

For an explicit formula of A(n,k), see equation (5) in Feng, 2020.
A(n,2) = n + 1.
A(n,3) = A000330(n+1).
A(n,4) = A006858(n+1).
A(n,5) = A091962(n+1).
Diagonal: A(n,n) = A123352(2*n-1,n-1) = A355400(n).

A006149 Number of 3-tuples (p_1, p_2, p_3) of Dyck paths of semilength n, such that each p_i is never below p_{i-1}.

Original entry on oeis.org

1, 1, 4, 30, 330, 4719, 81796, 1643356, 37119160, 922268360, 24801924512, 713055329720, 21706243125300, 694280570551875, 23188541161342500, 804601696647424500, 28880966163870711000, 1068595748063216307000, 40631980618055892780000, 1583603339463794983230000
Offset: 0

Views

Author

Keywords

Comments

a(n) is the determinant of the 3 X 3 Hankel matrix [a_0, a_1, a_2 ; a_1, a_2, a_3 ; a_2, a_3, a_4] with a_j=A000108(n+j). - Philippe Deléham, Apr 12 2007
Third subdiagonal in A123352, equivalent to the 6th subdiagonal in A185249, its "aerated" version with additional subdiagonals entirely filled with zeros. - R. J. Mathar, Feb 18 2011

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 183).
  • M. de Sainte-Catherine, Couplages et Pfaffiens en Combinatoire, Physique et Informatique. Ph.D Dissertation, Université Bordeaux I, 1983.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of A078920.
Diagonal of A123352 and of A185249.

Programs

  • GAP
    F:=Factorial;; List([0..20], n-> F(6)*F(2*n)*F(2*n+2)*F(2*n+4) /Product([0..5], j-> F(n+j) ) ); # G. C. Greubel, Aug 28 2019
  • Magma
    F:=Factorial; [F(6)*F(2*n)*F(2*n+2)*F(2*n+4)/&*[F(n+j): j in [0..5]] : n in [0..20]]; // G. C. Greubel, Aug 28 2019
    
  • Maple
    seq(6!*(2*n)!*(2*n+2)!*(2*n+4)!/mul((n+j)!, j=0..5), n=0..20); # G. C. Greubel, Aug 28 2019
  • Mathematica
    Table[6!*(2*n)!*(2*n+2)!*(2*n+4)!/Product[(n+j)!, {j,0,5}], {n,0,20}] (* G. C. Greubel, Aug 28 2019 *)
  • PARI
    vector(20, n, 6!*(2*n-2)!*(2*n)!*(2*n+2)!/prod(j=0,5, (n+j-1)!) ) \\ G. C. Greubel, Aug 28 2019
    
  • Sage
    f=factorial; [f(6)*f(2*n)*f(2*n+2)*f(2*n+4)/product(f(n+j) for j in (0..5)) for n in (0..20)] # G. C. Greubel, Aug 28 2019
    

Formula

G.f.: Hypergeometric 4_F_3 ( [ 1, 1/2, 5/2, 3/2 ]; [ 4, 5, 6 ]; 64 x ).
a(n) = Det[Table[binomial[i+2, j-i+3], {i, 1, n}, {j, 1, n}]]. - David Callan, Jul 20 2005
a(n) = 720 (2*n)! (2*n+2)! (2*n+4)! / (n! (n+1)! (n+2)! (n+3)! (n+4)! (n+5)!). - Steven Finch, Mar 30 2008
(n+5)*(n+4)*(n+3)*a(n) -8*(2*n+3)*(2*n+1)*(2*n-1)*a(n-1)=0. - R. J. Mathar, Feb 27 2018
From Peter Bala, Feb 22 2023: (Start)
a(n) = Product_{1 <= i <= j <= n-1} (i + j + 6)/(i + j).
a(n) = (1/2^(n-1)) * Product_{1 <= i <= j <= n-1} (i + j + 6)/(i + j - 1) for n >= 1. (End)
a(n) ~ 45 * 2^(6*n + 10) / (Pi^(3/2) * n^(21/2)). - Vaclav Kotesovec, Feb 23 2023

Extensions

Name clarified by Alois P. Heinz, Feb 24 2023

A006151 Number of 5-tuples (p_1, p_2, ..., p_5) of Dyck paths of semilength n, such that each p_i is never below p_{i-1}.

Original entry on oeis.org

1, 1, 6, 91, 2548, 111384, 6852768, 553361016, 55804330152, 6774025632340, 962310111888300, 156490840602392625, 28622389306817092500, 5804104057179375825000, 1289547073500366035700000, 310827567433642575691950000, 80604345356574686019872460000
Offset: 0

Views

Author

Keywords

Comments

a(n) is the determinant of the 5 X 5 Hankel matrix [a_0, a_1, a_2, a_3, a_4 ; a_1, a_2, a_3, a_4, a_5 ; a_2, a_3, a_4, a_5, a_6 ; a_3, a_4, a_5, a_6, a_7 ; a_4, a_5, a_6, a_7, a_8] with a_j=A000108(n+j). - Philippe Deléham, Apr 12 2007

References

  • M. de Sainte-Catherine, Couplages et Pfaffiens en Combinatoire, Physique et Informatique. Ph.D Dissertation, Université Bordeaux I, 1983.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=5 of A078920.
Diagonal of A123352 and of A185249.

Programs

  • Maple
    with(linalg): ctln:= proc(n) option remember; binomial(2*n,n)/(n+1) end: a:= n-> det(Matrix(5, (i,j)-> ctln(i+j-2+n))): seq(a(n), n=0..20); # Alois P. Heinz, Sep 10 2008
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1,
           32*mul((2*(n-i)+7)/(n+9-i), i=0..4)*a(n-1))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 03 2014
  • Mathematica
    a[n_] := Det[Array[CatalanNumber[#1 + #2 - 2 + n]&, {5, 5}]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 03 2014, after Alois P. Heinz *)
    Table[1316818944000 * (2*n)! * (2*(n+1))! * (2*(n+2))! * (2*(n+3))! * (2*(n+4))! / (n! * (n+1)! * (n+2)! * (n+3)! * (n+4)! * (n+5)! * (n+6)! * (n+7)! * (n+8)! * (n+9)!),{n,0,20}] (* Vaclav Kotesovec, Mar 20 2014 *)

Formula

From Vaclav Kotesovec, Mar 20 2014: (Start)
Recurrence: (n+5)*(n+6)*(n+7)*(n+8)*(n+9)*a(n) = 32*(2*n-1)*(2*n+1)*(2*n+3)*(2*n+5)*(2*n+7)*a(n-1).
a(n) = 1316818944000 * (2*n)! * (2*(n+1))! * (2*(n+2))! * (2*(n+3))! * (2*(n+4))! / (n! * (n+1)! * (n+2)! * (n+3)! * (n+4)! * (n+5)! * (n+6)! * (n+7)! * (n+8)! * (n+9)!).
a(n) ~ 1380784741023744000 * 1024^n / (Pi^(5/2) * n^(55/2)). (End)
From Peter Bala, Feb 22 2023: (Start)
a(n) = Product_{1 <= i <= j <= n-1} (i + j + 10)/(i + j).
a(n) = (1/2^(n-1)) * Product_{1 <= i <= j <= n-1} (i + j + 10)/(i + j - 1) for n >= 1. (End)

Extensions

More terms from Alois P. Heinz, Sep 10 2008
Name clarified by Alois P. Heinz, Feb 24 2023

A185249 Triangle read by rows: Table III.5 of Myriam de Sainte-Catherine's 1983 thesis.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 1, 0, 5, 0, 1, 0, 3, 0, 14, 0, 1, 1, 0, 14, 0, 42, 0, 1, 0, 4, 0, 84, 0, 132, 0, 1, 1, 0, 30, 0, 594, 0, 429, 0, 1, 0, 5, 0, 330, 0, 4719, 0, 1430, 0, 1, 1, 0, 55, 0, 4719, 0, 40898, 0, 4862, 0, 1, 0, 6, 0, 1001, 0, 81796, 0, 379236, 0, 16796, 0, 1, 1, 0, 91, 0, 26026, 0, 1643356, 0, 3711916, 0, 58786, 0, 1
Offset: 0

Views

Author

N. J. A. Sloane, Feb 15 2011

Keywords

Comments

I have a photocopy of certain pages of the thesis, but unfortunately not enough to find the definition of this table. I have written to the author.
(Added later) However, Alois P. Heinz found a formula involving Catalan numbers which matches all the data and is surely correct, so the triangle is no longer a mystery.
Reading upwards along antidiagonals gives A123352.
From Petros Hadjicostas, Sep 04 2019: (Start)
Consider "Young tableaux with entries from the set {1,...,n}, strictly increasing in rows and not decreasing in columns. Note that usually the reverse convention between rows and columns is used."
de Sainte-Catherine and Viennot (1986) proved that "the number b_{n,k} of such Young tableaux having only columns with an even number of elements and bounded by height p = 2*k" is given by b_{n,k} = Product_{1 <= i <= j <= n} (2*k + i + j)/(i + j)." In Section 6 of their paper, they give an interpretation of this formula in terms of Pfaffians and perfect matchings.
It turns out that for the current array, T(n,k) = b_{k, (n-k)/2} if n-k is even, and 0 otherwise (for n >= 0 and 0 <= k <= n). It is unknown, however, what kind of interpretation Myriam de Sainte-Catherine gave to the number T(n,k) three years earlier in her 1983 Ph.D. dissertation. It may be distantly related to the numbers b_{n,k} that are found in her 1986 paper with G. Viennot.
(End)
The T(n, k) for n and k same parity are the numbers in the upper triangle of the Catalan Number Wall in "Number Walls in Combinatorics". Thus 0 = T(n-1, k+1)*T(n+1, k-1) - T(n-1, k-1)*T(n+1, k+1) + T(n, k)^2 for all n, k. - Michael Somos, Aug 15 2023

Examples

			Triangle begins:
  1
  0 1
  1 0  1
  0 2  0    1
  1 0  5    0     1
  0 3  0   14     0     1
  1 0 14    0    42     0       1
  0 4  0   84     0   132       0      1
  1 0 30    0   594     0     429      0       1
  0 5  0  330     0  4719       0   1430       0     1
  1 0 55    0  4719     0   40898      0    4862     0     1
  0 6  0 1001     0 81796       0 379236       0 16796     0 1
  1 0 91    0 26026     0 1643356      0 3711916     0 58786 0 1
  ...
		

References

  • Myriam de Sainte-Catherine, Couplages et Pfaffiens en Combinatoire, Physique et Informatique. Ph.D. Dissertation, Université Bordeaux I, 1983.

Crossrefs

Row sums give A186232. Nonzero diagonals give columns in A078920.
Cf. A179898.

Programs

  • Maple
    with(LinearAlgebra):
    ctln:= proc(n) option remember; binomial(2*n, n)/(n+1) end:
    T := proc(n, k)
           if n=k then 1
         elif irem(n+k, 2)=1 then 0
         else Determinant(Matrix((n-k)/2, (i, j)-> ctln(i+j-1+k)))
           fi
         end:
    seq(seq(T(n,k), k=0..n), n=0..12);  # Alois P. Heinz, Feb 15 2011
  • Mathematica
    t[n_, n_] = 1; t[n_, k_] /; Mod[n+k, 2] == 1 = 0; t[n_, k_] := Array[CatalanNumber[#1 + #2 - 1 + k]&, {(n-k)/2, (n-k)/2}] // Det; Table[t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 14 2014, after Alois P. Heinz *)
  • PARI
    {T(n, k) = if((n-k)%2||k<0||k>n, 0, prod(i=1, k, prod(j=i, k, (n-k+i+j)/(i+j))))}; /* Michael Somos, Aug 15 2023 */

Formula

T(n,k) = Product_{1 <= i <= j <= k} (n-k + i + j)/(i + j) if n - k is even, and = 0 otherwise (for n >= 0 and 0 <= k <= n). - Petros Hadjicostas, Sep 04 2019

Extensions

Typo in data corrected by Alois P. Heinz, Feb 15 2011
Showing 1-7 of 7 results.