cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 84 results. Next

A071609 Squared radii of the spheres around (0,0,0) that contain record numbers of lattice points.

Original entry on oeis.org

1, 2, 5, 9, 14, 26, 41, 74, 89, 101, 146, 194, 269, 314, 341, 446, 614, 626, 689, 794, 854, 941, 1106, 1109, 1154, 1286, 1361, 1634, 1781, 1889, 2141, 2609, 2966, 3134, 3401, 3449, 3506, 4241, 4289, 4826, 5381, 5561, 6254, 7229, 7829, 8069, 8126
Offset: 1

Views

Author

Hugo Pfoertner, May 25 2002

Keywords

Comments

The number of lattice points (i,j,k) on the sphere around (0,0,0) with i^2 + j^2 + k^2 = a(n) is given by A071611(n).
Indices of records in A005875. - Daniel Suteu, Aug 13 2021

Crossrefs

A083703 Expansion of eta(q)^4/eta(q^4) in powers of q.

Original entry on oeis.org

1, -4, 2, 8, -4, -8, -8, 16, 6, -12, 8, 8, -8, -24, 0, 16, 12, -16, 10, 24, -8, -16, -24, 16, 8, -28, 8, 32, -16, -8, 0, 32, 6, -32, 16, 16, -12, -40, -24, 16, 24, -16, 16, 40, -8, -40, 0, 32, 24, -36, 10, 16, -24, -24, -32, 48, 0, -32, 24, 24, -16, -40, 0, 48, 12, -16, 16, 56, -16, -32, -48, 16, 30, -64, 8, 40, -24
Offset: 0

Views

Author

Michael Somos, May 04 2003

Keywords

Comments

Euler transform of period 4 sequence [ -4,-4,-4,-3,...].

Crossrefs

A080965(n)=(-1)^n a(n). a(2n)=0 iff n in A004215 (checked up to n=343).
a(2n)=0 iff A005875(n)=0.

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          `if`(irem(d, 4)=0, -3, -4), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..80);  # Alois P. Heinz, Jan 07 2017
  • Mathematica
    CoefficientList[QPochhammer[x]^4/QPochhammer[x^4] + O[x]^80, x] (* Jean-François Alcover, Sep 19 2016 *)
  • PARI
    a(n)=if(n<0,0,X=x+x*O(x^n); polcoeff(eta(X)^4/eta(X^4),n))

Formula

G.f.: Product_{n>0} (1-x^n)^4/(1-x^(4n)).
a(0) = 1, a(n) = -(4/n)*Sum_{k=1..n} A285895(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 29 2017

A085121 Number of ways of writing n as the sum of three odd squares.

Original entry on oeis.org

0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 0, 0, 0, 0, 0, 72, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 56, 0, 0, 0, 0, 0, 0, 0, 72, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 0, 0, 0, 0, 0, 72
Offset: 0

Views

Author

N. J. A. Sloane, Apr 25 2004

Keywords

Comments

Number of ways of writing n as the sum of the squares of three odd numbers (see example). Equals 8*A008437 because each summand can be the square of either a positive or negative odd number, and there are three summands, thus 2^3 = 8. - Antti Karttunen & Michel Marcus, Jul 23 2018

Examples

			a(3) = 8 because 3 = (+1)^2 + (+1)^2 + (+1)^2 = (-1)^2 + (+1)^2 + (+1)^2 = (+1)^2 + (-1)^2 + (+1)^2 = (+1)^2 + (+1)^2 + (-1)^2 = (-1)^2 + (-1)^2 + (+1)^2 = (-1)^2 + (+1)^2 + (-1)^2 = (+1)^2 + (-1)^2 + (-1)^2 = (-1)^2 + (-1)^2 + (-1)^2. - _Antti Karttunen_, Jul 23 2018
		

Crossrefs

Cf. A005875, A008437. The nonzero coefficients give A005878.

Programs

Formula

G.f.: (Sum_{n=-oo..oo} q^((2n+1)^2))^3.

A169784 Number of solutions to a^2 + b^2 + 5*c^2 = n.

Original entry on oeis.org

1, 4, 4, 0, 4, 10, 8, 8, 4, 12, 24, 0, 0, 16, 8, 16, 4, 8, 20, 0, 10, 16, 24, 8, 8, 44, 8, 0, 8, 16, 40, 16, 4, 16, 24, 0, 12, 32, 8, 16, 24, 16, 16, 0, 0, 50, 40, 8, 0, 28, 44, 0, 16, 16, 32, 40, 8, 32, 40, 0, 16, 32, 16, 24, 4, 48, 16, 0, 8, 16, 80, 16, 20, 40, 24, 0, 0, 16, 32, 32, 10, 36
Offset: 0

Views

Author

N. J. A. Sloane, May 12 2010

Keywords

Comments

a(n) = 0 for n of the form 4^i*(8*j+3), A055046. [Zak Seidov, May 12 2010]

Crossrefs

x^2+y^2+k*z^2: A005875, A014455, A034933, A169783.

Formula

G.f.: theta_3(q)^2*theta_3(q^5), where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Aug 01 2018

A290734 Number of compact partitions of n containing a 1 where each partition is counted with a certain weight.

Original entry on oeis.org

0, -1, 2, -2, 3, -6, 6, -4, 6, -9, 10, -8, 6, -12, 14, -6, 7, -16, 16, -8, 10, -18, 14, -8, 8, -17, 24, -10, 6, -24, 22, -4, 10, -22, 20, -16, 9, -20, 28, -6, 8, -32, 26, -8, 14, -28, 24, -8, 8, -25, 34, -18, 6, -36, 34, -2, 18, -28, 24, -24, 10, -28, 40, -4, 7, -42, 38, -12, 18, -40, 26, -12, 12, -28
Offset: 0

Views

Author

N. J. A. Sloane, Aug 10 2017

Keywords

Comments

See Andrews (2016) for the definition of the particular weight used here.
4*A290733(n) + 2*a(n) = (-1)^n*A005875(n) for n > 0.

Crossrefs

Programs

  • Maple
    M:=101;
    B:=proc(a,q,n) local j,t1; global M;
    t1:=1;
    for j from 0 to M do
    t1:=t1*(1-a*q^j)/(1-a*q^(n+j));
    od;
    t1; end;
    # c_1
    T1:=add( (-1)^m*q^(m*(m+1)/2)/(B(-q,q,m)*(1+q^m)), m=1..M):
    series(T1,q,M); c1seq:=seriestolist(%);

Formula

See Maple program for g.f.

A294595 Numbers that are the sum of three squares (square 0 allowed) in exactly six ways.

Original entry on oeis.org

194, 209, 269, 281, 290, 297, 321, 326, 329, 342, 365, 386, 389, 401, 426, 434, 449, 459, 482, 485, 489, 497, 513, 531, 534, 542, 546, 554, 558, 561, 578, 601, 602, 633, 649, 659, 662, 665, 675, 678, 681, 693, 699, 705, 713, 714, 722, 737, 741, 747, 750, 754
Offset: 1

Views

Author

Robert Price, Nov 03 2017

Keywords

Comments

These are the numbers for which A000164(a(n)) = 6.
a(n) is the n-th largest number which has a representation as a sum of three integer squares (square 0 allowed), in exactly six ways, if neither the order of terms nor the signs of the numbers to be squared are taken into account. The multiplicity of a(n) with order and signs taken into account is A005875(a(n)).
This sequence is a proper subsequence of A000378.

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 1000], Length[PowersRepresentations[#, 3, 2]] == 6 &]

Extensions

Updated Mathematica program to Version 11. by Robert Price, Nov 01 2019

A343631 X-coordinate of the points following the 3D spiral defined in A343630.

Original entry on oeis.org

0, 0, 1, 0, -1, 0, 0, 1, 0, -1, 0, 1, -1, -1, 1, 1, 0, -1, 0, 1, -1, -1, 1, 1, -1, -1, 1, 0, 2, 0, -2, 0, 0, 1, 0, -1, 0, 2, 0, -2, 0, 2, 1, -1, -2, -2, -1, 1, 2, 2, 0, -2, 0, 0, 0, 1, -1, 1, -1, -1, 1, 2, 1, -1, -2, -2, -1, 1, 2, 2, 1, -1, -2, -2, -1, 1, 2, 1, -1, -1, 1, 2, 0, -2, 0, 2, -2, -2, 2, 2, 0, -2, 0, 0, 2, 1, -1, -2, -2, -1, 1, 2, 2, -2, -2, 2, 3, 0, -3, 0
Offset: 0

Views

Author

M. F. Hasler, Apr 28 2021

Keywords

Comments

See the main entry A343630 for details about this 3D generalization of an Ulam type spiral using the Euclidean norm.
Sequences A343632 and A343633 give the y and z coordinates.
The sequence can be seen as a table with row lengths 3*A005875, where A005875(r) is the number of points at distance sqrt(r) from the origin.
Sequence A343641 is the analog for the square spiral variant A343640.

Crossrefs

Cf. A343632, A343633 (list of y and z-coordinates).
Cf. A343641 (variant using the sup norm => square spiral).
Cf. A342561 (variant which scans each sphere by increasing z).
Cf. A005875 (number of points on a shell with given radius).
Cf. A004215 (numbers that can't be written as sum of 3 squares => empty shells).

Programs

  • PARI
    d=1; A343631_vec=concat([[P[1] | P<-S=A343630_row(n,d)]+(#S&&!d*=-1) | n<-[0..8]]) \\ the variable d is necessary to correct the z-scan direction in rows between A004215(2k-1) and A004215(2k).

A343632 Y-coordinate of the points following the 3D spiral defined in A343630.

Original entry on oeis.org

0, 0, 0, 1, 0, -1, 0, 0, 1, 0, -1, 1, 1, -1, -1, 0, 1, 0, -1, 1, 1, -1, -1, 1, 1, -1, -1, 0, 0, 2, 0, -2, 0, 0, 1, 0, -1, 0, 2, 0, -2, 1, 2, 2, 1, -1, -2, -2, -1, 0, 2, 0, -2, 1, -1, 0, 0, 1, 1, -1, -1, 1, 2, 2, 1, -1, -2, -2, -1, 1, 2, 2, 1, -1, -2, -2, -1, 1, 1, -1, -1, 0, 2, 0, -2, 2, 2, -2, -2, 0, 2, 0, -2, 0, 1, 2, 2, 1, -1, -2, -2, -1, 2, 2, -2, -2, 0, 3, 0, -3
Offset: 0

Views

Author

M. F. Hasler, Apr 28 2021

Keywords

Comments

See the main entry A343630 for details about this 3D generalization of an Ulam type spiral using the Euclidean norm.
Sequences A343631 and A343633 give the x and z coordinates.
The sequence can be seen as a table with row lengths A005875, where A005875(r) is the number of points at distance sqrt(r) from the origin.
Sequence A343642 is the analog for the square spiral variant A343640.

Crossrefs

Cf. A343631, A343633 (list of x and z-coordinates).
Cf. A343642 (variant using the sup norm => square spiral).
Cf. A342562 (variant which scans each sphere by increasing z).
Cf. A005875 (number of points on a shell with given radius).
Cf. A004215 (numbers that can't be written as sum of 3 squares => empty shells).

Programs

  • PARI
    d=1; A343632_vec=concat([[P[2] | P<-S=A343630_row(n,d)]+(#S&&!d*=-1) | n<-[0..9]]) \\ the variable d is necessary to correct the z-scan direction in rows between A004215(2k-1) and A004215(2k).

A066536 Number of ways of writing n as a sum of n+1 squares.

Original entry on oeis.org

1, 4, 12, 32, 90, 312, 1288, 5504, 22608, 88660, 339064, 1297056, 5043376, 19975256, 80027280, 321692928, 1291650786, 5177295432, 20748447108, 83279292960, 335056780464, 1351064867328, 5456890474248, 22063059606912
Offset: 0

Views

Author

Peter Bertok (peter(AT)bertok.com), Jan 07 2002

Keywords

Examples

			There are a(2)=12 solutions (x,y,z) of 2=x^2+y^2+z^2: 3 permutations of (1,1,0), 3 permutations of (-1,-1,0) and 6 permutations of (1, -1,0).
		

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[SquaresR[n+1, n], {n, 24}]]
    (* Calculation of constants {d,c}: *) {1/r, Sqrt[s/(2*Pi*r^2*Derivative[0, 0, 2][EllipticTheta][3, 0, r*s])]} /. FindRoot[{s == EllipticTheta[3, 0, r*s], r*Derivative[0, 0, 1][EllipticTheta][3, 0, r*s] == 1}, {r, 1/4}, {s, 5/2}, WorkingPrecision -> 70] (* Vaclav Kotesovec, Nov 16 2023 *)
  • PARI
    {a(n)=local(THETA3=1+2*sum(k=1,sqrtint(n),x^(k^2))+x*O(x^n));polcoeff(THETA3^(n+1), n)} /* Paul D. Hanna, Oct 26 2009*/

Formula

a(n) equals the coefficient of x^n in the (n+1)-th power of Jacobi theta_3(x) where theta_3(x) = 1 + 2*Sum_{n>=1} x^(n^2). - Paul D. Hanna, Oct 26 2009
a(n) is divisible by n+1: a(n)/(n+1) = A166952(n) for n>=0. - Paul D. Hanna, Oct 26 2009
a(n) ~ c * d^n / sqrt(n), where d = 4.13273137623493996302796465... (= 1/radius of convergence A166952), c = 0.70710538549959357505200... . - Vaclav Kotesovec, Sep 10 2014

Extensions

Edited by Dean Hickerson, Jan 12 2002
a(0) added by Paul D. Hanna, Oct 26 2009
Edited by R. J. Mathar, Oct 29 2009

A080965 Expansion of eta(q^2)^12/(eta(q)^4eta(q^4)^5) in powers of q.

Original entry on oeis.org

1, 4, 2, -8, -4, 8, -8, -16, 6, 12, 8, -8, -8, 24, 0, -16, 12, 16, 10, -24, -8, 16, -24, -16, 8, 28, 8, -32, -16, 8, 0, -32, 6, 32, 16, -16, -12, 40, -24, -16, 24, 16, 16, -40, -8, 40, 0, -32, 24, 36, 10, -16, -24, 24, -32, -48, 0, 32, 24, -24, -16, 40, 0, -48, 12, 16, 16
Offset: 0

Views

Author

Michael Somos, Feb 28 2003

Keywords

Comments

Euler transform of period 4 sequence [4,-8,4,-3,...].

Crossrefs

a(n)=A080964(4n)=2*A072071(4n)-A072070(4n).
A083703(n)=(-1)^n a(n). a(2n)=0 iff n in A004215 (checked up to n=343).
a(2n)=0 iff A005875(n)=0.

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add([-3, 4, -8, 4]
          [1+irem(d, 4)]*d, d=divisors(j)) *a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Mar 05 2015
  • Mathematica
    a[n_] := a[n] = If[n==0, 1, Sum[DivisorSum[j, {-3, 4, -8, 4}[[1 + Mod[#, 4]]]*#&]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 25 2015, after Alois P. Heinz *)
  • PARI
    a(n)=local(X); if(n<0,0,X=x+x*O(x^n); polcoeff(eta(X)^-4*eta(X^2)^12*eta(X^4)^-5,n))

Formula

G.f.: Product_{n>0} (1-x^(2n))^12/((1-x^n)^4(1-x^(4n))^5).
Previous Showing 41-50 of 84 results. Next