cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 90 results. Next

A092185 a(n) = (5/6)*n^3+(5/2)*n^2+(8/3)*n.

Original entry on oeis.org

0, 6, 22, 53, 104, 180, 286, 427, 608, 834, 1110, 1441, 1832, 2288, 2814, 3415, 4096, 4862, 5718, 6669, 7720, 8876, 10142, 11523, 13024, 14650, 16406, 18297, 20328, 22504, 24830, 27311, 29952, 32758, 35734, 38885, 42216, 45732, 49438, 53339, 57440, 61746, 66262
Offset: 0

Views

Author

N. J. A. Sloane, Apr 02 2004

Keywords

Crossrefs

Partial sums of A005891.

Programs

Formula

a(n)= +4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). G.f.: x*(6-2*x+x^2)/(x-1)^4. - R. J. Mathar, Jun 21 2010

A121990 Expansion of x*(1+9*x+2*x^2)/((1-x)*(1-3*x+x^2)).

Original entry on oeis.org

1, 13, 50, 149, 409, 1090, 2873, 7541, 19762, 51757, 135521, 354818, 928945, 2432029, 6367154, 16669445, 43641193, 114254146, 299121257, 783109637, 2050207666, 5367513373, 14052332465, 36789484034, 96316119649, 252158874925
Offset: 1

Views

Author

Roger L. Bagula, Sep 10 2006

Keywords

Crossrefs

Programs

  • GAP
    F:=Fibonacci;; List([1..30], n-> 12*F(2*n-1) +F(2*n-3) -12 ); # G. C. Greubel, Nov 21 2019
  • Magma
    F:= Fibonacci; [12*F(2*n-1) +F(2*n-3) -12: n in [1..30]]; // G. C. Greubel, Nov 21 2019
    
  • Maple
    with(combinat); seq(12*fibonacci(2*n-1) +fibonacci(2*n-3) -12, n=1..30); # G. C. Greubel, Nov 21 2019
  • Mathematica
    LinearRecurrence[{4,-4,1}, {1,13,50}, 30] (* G. C. Greubel, Sep 14 2017 *)
    With[{F=Fibonacci}, Table[12*(F[2*n-1]-1) + F[2*n-3], {n,30}]] (* G. C. Greubel, Nov 21 2019 *)
  • PARI
    x='x+O('x^30); Vec(x*(1+9*x+2*x^2)/((1-x)*(x^2-3*x+1))) \\ G. C. Greubel, Sep 14 2017
    
  • PARI
    vector(30, n, 12*fibonacci(2*n-1) +fibonacci(2*n-3) -12) \\ G. C. Greubel, Nov 21 2019
    
  • Sage
    f=fibonacci; [12*f(2*n-1) + f(2*n-3) -12 for n in (1..30)] # G. C. Greubel, Nov 21 2019
    

Formula

a(n) = 3*a(n - 1) - a(n - 2) + 12.
a(n) = (1/10)*(-120 + (65 - 11*sqrt(5))*((1/2)*(3 - sqrt(5)))^n + ((1/2)*(3 + sqrt(5)))^n*(65 + 11*sqrt(5))).
From R. J. Mathar, Apr 04 2009: (Start)
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3).
G.f.: x*(1+9*x+2*x^2)/((1-x)*(1-3*x+x^2)). (End)
a(n) = 12*Fibonacci(2*n-1) + Fibonacci(2*n-3) - 12. - G. C. Greubel, Nov 21 2019

Extensions

Edited and new name based on g.f. by G. C. Greubel and Joerg Arndt, Sep 14 2017

A121991 a(n) = 3*a(n-1) - a(n-2) - a(n-3) + 12.

Original entry on oeis.org

0, 1, 13, 50, 148, 393, 993, 2450, 5976, 14497, 35077, 84770, 204748, 494409, 1193721, 2882018, 6957936, 16798081, 40554301, 97906898, 236368324, 570643785, 1377656145, 3325956338, 8029569096, 19385094817
Offset: 0

Views

Author

Roger L. Bagula, Sep 10 2006

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == 3*a[n - 1] - a[n - 2] - a[n - 3] + 12, a[0] == 0, a[1] == 1, a[2] == 13}, a, {n,0,50}] (* or *) LinearRecurrence[{4,-4,0,1}, {0,1,13,50}, 50] (* G. C. Greubel, Sep 14 2017 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(-x(1+9x+2x^2)/((1-x)^2*(x^2+2x-1))) ) \\ G. C. Greubel, Sep 14 2017

Formula

a(n) = ((11 - 7*sqrt(2))*(1 - sqrt(2))^n + (1 + sqrt(2))^n*(11 + 7*sqrt(2)) - 24*n - 22)/4.
O.g.f.: -x(1+9x+2x^2)/((1-x)^2*(x^2+2x-1)). - R. J. Mathar, Aug 22 2008
a(n) = -6(n+1)+(1+11*A000129(n+1)+3*A000129(n))/2. - R. J. Mathar, Aug 22 2008
E.g.f.: (1/2)*(11*cosh(sqrt(2)*x) + 7*sqrt(2)*sinh(sqrt(2)*x) - (12*x + 11))*exp(x). - G. C. Greubel, Sep 14 2017
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-4). - Wesley Ivan Hurt, May 04 2024

Extensions

Edited by N. J. A. Sloane, Aug 24 2008, Dec 30 2008

A141534 Derived from the centered polygonal numbers: start with the first triangular number, then the sum of the first square number and the second triangular number, then the sum of first pentagonal number, the second square number and the third triangular number, and so on and so on...

Original entry on oeis.org

1, 4, 11, 26, 55, 105, 184, 301, 466, 690, 985, 1364, 1841, 2431, 3150, 4015, 5044, 6256, 7671, 9310, 11195, 13349, 15796, 18561, 21670, 25150, 29029, 33336, 38101, 43355, 49130, 55459, 62376, 69916, 78115, 87010, 96639, 107041, 118256, 130325
Offset: 1

Views

Author

Dan Graybill (clopen(AT)comcast.net), Aug 12 2008

Keywords

Comments

Consider the array of triangular, square and centered polygonal numbers (irregular variant of A086272 and A086273):
1 3 6 10 15 21 28 36 45 55 A000217
1 4 9 16 25 36 49 64 81 100 A000290
1 6 16 31 51 76 106 141 181 226 A005891
1 7 19 37 61 91 127 169 217 271 A003215
1 8 22 43 71 106 148 197 253 316 A069099
1 9 25 49 81 121 169 225 289 361 A016754
1 10 28 55 91 136 190 253 325 406 A060544
1 11 31 61 101 151 211 281 361 451 A062786
1 12 34 67 111 166 232 309 397 496 A069125
1 13 37 73 121 181 253 337 433 541 A003154
1 14 40 79 131 196 274 365 469 586 A069126
1 15 43 85 141 211 295 393 505 631 A069127
etc. The sequence contains the antidiagonal sums of this array. - R. J. Mathar, Jun 05 2011
For comparison, the antidiagonal sums of A086270 are essentially A006522 starting at the 4th term. - R. J. Mathar, Sep 20 2008

Crossrefs

Cf. A000217.

Formula

a(n) = (n-1)*(n^3+11*n^2-38*n+120)/24, n>1. - R. J. Mathar, Sep 12 2008
G.f.: x*(1-x+x^2+x^3-x^5)/(1-x)^5. - Alexander R. Povolotsky, Jun 06 2011

A193249 Snub dodecahedron with faces of centered polygons.

Original entry on oeis.org

1, 153, 755, 2107, 4509, 8261, 13663, 21015, 30617, 42769, 57771, 75923, 97525, 122877, 152279, 186031, 224433, 267785, 316387, 370539, 430541, 496693, 569295, 648647, 735049, 828801, 930203, 1039555, 1157157, 1283309, 1418311, 1562463, 1716065, 1879417
Offset: 1

Views

Author

Craig Ferguson, Jul 19 2011

Keywords

Comments

The sequence starts with a central dot and expands outward with (n-1) centered polygonal pyramids producing a snub dodecahedron. Each iteration requires the addition of (n-2) edges and (n-1) vertices to complete the centered polygon of each face. [centered triangles (A005448) and centered pentagons (A005891)]

Programs

  • Excel
    =50*ROW()^3-75*ROW()^2+27*ROW()-1 fill down to desired size.
    
  • Magma
    [50*n^3-75*n^2+27*n-1: n in [1..34]];  // Bruno Berselli, Jul 22 2011
  • Maple
    A193249:=n->(2*n-1)*(25*n^2-25*n+1); seq(A193249(n), n=1..50); # Wesley Ivan Hurt, Apr 30 2014
  • Mathematica
    Table[(2 n - 1) (25 n^2 - 25 n + 1), {n, 50}] (* Wesley Ivan Hurt, Apr 30 2014 *)
  • PARI
    for(n=1, 34, print1(50*n^3-75*n^2+27*n-1", "));  \\ Bruno Berselli, Jul 21 2011
    

Formula

a(n) = 50*n^3-75*n^2+27*n-1 = (2*n-1)*(25*n^2-25*n+1).
G.f.: x*(1+x)*(1+148*x+x^2)/(1-x)^4. - Bruno Berselli, Jul 22 2011

A193251 Small rhombicosidodecahedron with faces of centered polygons.

Original entry on oeis.org

1, 123, 605, 1687, 3609, 6611, 10933, 16815, 24497, 34219, 46221, 60743, 78025, 98307, 121829, 148831, 179553, 214235, 253117, 296439, 344441, 397363, 455445, 518927, 588049, 663051, 744173, 831655, 925737, 1026659, 1134661, 1249983, 1372865, 1503547, 1642269
Offset: 1

Views

Author

Craig Ferguson, Jul 19 2011

Keywords

Comments

The sequence starts with a central dot and expands outward with (n-1) centered polygonal pyramids producing a small rhombicosidodecahedron. Each iteration requires the addition of (n-2) edges and (n-1) vertices to complete the centered polygon of each face. [centered triangles (A005448), centered squares (A001844) and centered pentagons (A005891)]

Crossrefs

Programs

Formula

a(n) = 40*n^3 - 60*n^2 + 22*n - 1.
G.f.: x*(1+x)*(x^2 + 118*x + 1)/(x-1)^4. - R. J. Mathar, Aug 26 2011
From Elmo R. Oliveira, Aug 22 2025: (Start)
E.g.f.: 1 + exp(x)*(-1 + 2*x + 60*x^2 + 40*x^3).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 4.
a(n) = A060747(n)*A195317(n). (End)

A216318 Number of peaks in all Dyck n-paths after changing each valley to a peak by the transform DU -> UD.

Original entry on oeis.org

0, 1, 2, 8, 31, 119, 456, 1749, 6721, 25883, 99892, 386308, 1496782, 5809478, 22584160, 87922215, 342741285, 1337698515, 5226732060, 20442936360, 80031775890, 313585934610, 1229695855440, 4825705232010, 18950613058026, 74467158658974, 292797216620776, 1151895428382104
Offset: 0

Views

Author

David Scambler, Sep 03 2012

Keywords

Examples

			The 5 Dyck 3-paths after changing DU to UD become two copies of UUUDDD with one peak each and three copies of UUDUDD with two peaks each giving a(3)=8.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(16*x*(1+Sqrt[1-4*x]+(5+3*Sqrt[1-4*x]-2*x)*(-1+x) x))/((1+Sqrt[1-4*x])^5*Sqrt[1-4*x]),{x,0,27}],x]
  • Maxima
    a(n):=if n<2 then n else binomial(2*n-2,n-1)*(5*(n-1)^2+5*(n-1)+2)/(2*n*(n+1)); /* Vladimir Kruchinin, Oct 30 2020 */
  • PARI
    x='x+O('x^50); concat([0], Vec((16*x*(1+sqrt(1-4*x)-(5+3*sqrt(1-4*x)-2*x)*(1-x)*x)) / ((1+sqrt(1-4*x))^5*sqrt(1-4*x)))) \\ G. C. Greubel, Apr 01 2017
    

Formula

a(0)=0, a(1)=1, a(n>=2) = A001700(n-1) - Sum_{k=0..n-3} A001700(k) + Sum_{k=0..n-2} A003516(k) - 1.
G.f.: (16*x*(1+sqrt(1-4*x)+(5+3*sqrt(1-4*x)-2*x) * (-1+x)*x)) / ((1+sqrt(1-4*x))^5 * sqrt(1-4*x)).
a(n) ~ 5*2^(2*n-3)/sqrt(Pi*n). - Vaclav Kotesovec, Mar 21 2014
a(n) = C(2*n-2,n-1)*(5*(n-1)^2+5*(n-1)+2)/(2*n*(n+1)), n>1, a(0)=0, a(1)=1. - Vladimir Kruchinin, Oct 30 2020

A244911 Table read by antidiagonals: T(n,k) = n*k + T(n-1,k) for n >=1, T(0,k) = 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 7, 7, 1, 1, 5, 10, 13, 11, 1, 1, 6, 13, 19, 21, 16, 1, 1, 7, 16, 25, 31, 31, 22, 1, 1, 8, 19, 31, 41, 46, 43, 29, 1, 1, 9, 22, 37, 51, 61, 64, 57, 37, 1, 1, 10, 25, 43, 61, 76, 85, 85, 73, 46, 1, 1, 11, 28, 49, 71, 91, 106, 113, 109, 91
Offset: 0

Views

Author

Kival Ngaokrajang, Jul 07 2014

Keywords

Comments

T(n,k) is the total number of boxes, when we start with 1 center box (n = 0) then expand 1 box on k-arms for each n iteration. See illustration in links.
It seems that column C(k) = centered k-gonal numbers, and row R(n) = A000217(n)*k + 1.
The triangle under the main diagonal is A121722.
Column N (CN) is the Narayana transform (A001263) of (1, N, 0, 0, 0, ...). Example: C2 (1, 3, 7, 13, ...) is the Narayana transform of (1, 2, 0, 0, 0, ...). - Gary W. Adamson, Oct 01 2015

Examples

			Table begins:
       C0  C1  C2  C3  C4  C5
  n/k  0   1   2   3   4   5   ...
R0 0   1   1   1   1   1   1   ...
R1 1   1   2   3   4   5   6   ...
R2 2   1   4   7   10  13  16  ...
R3 3   1   7   13  19  25  31  ...
R4 4   1   11  21  31  41  51  ...
R5 5   1   16  31  46  61  76  ...
R6 6   1   22  43  64  85  106 ...
R7 7   1   29  57  85  113 141 ...
R8 8   1   37  73  109 145 181 ...
R9 9   1   46  91  136 181 226 ...
  ...  ... ... ... ... ... ... ...
C1 = A000124, C2 = A002061, C3 = A005448, C4 = A001844, C5 = A005891, C6 = A003215, C7 = A069099, C8 = A016754, C9 = A060544, C10 = A062786, C11 = A069125, C12  =  A003154.
R1 = A000027, R2 = A016777, R3 = A016921, R4 = A017281, R5 = 15*k + 1, R6 = A215146, R7 = A161714.
		

Crossrefs

Formula

T(n,k) = n*k + T(n-1,k) for n >=1, T(0,k) = 1.

A276917 Numbers obtained by alternatively adding centered pentagonal layers of 5*(2^n-1) and 5*(3^n-1) elements.

Original entry on oeis.org

1, 6, 16, 31, 71, 106, 236, 311, 711, 866, 2076, 2391, 6031, 6666, 17596, 18871, 51671, 54226, 152636, 157751, 452991, 463226, 1348956, 1369431, 4026631, 4067586, 12039196, 12121111, 36035951, 36199786, 107944316, 108271991, 323505591, 324160946, 969861756
Offset: 0

Views

Author

Daniel Poveda Parrilla, Dec 29 2016

Keywords

Comments

a(0), a(1), a(2) and a(3) are the first four centered pentagonal numbers, as they match the same pattern. From a(4) onwards all terms are a different kind of centered pentagonal numbers, as the number of elements in subsequent layers doesn't increase uniformly.
a(13) is the first palindromic number in the sequence. a(19) is the second one.
First prime terms are a(3), a(4), a(7), a(31), a(100) and a(115).

Crossrefs

Cf. A005891.

Programs

  • Mathematica
    Table[5 (Sum[2^i, {i, 0, ((n + Mod[n, 2])/2)}] + Sum[3^j, {j, 0, ((n - Mod[n, 2])/2)}]) - 5 n - 9, {n, 0, 28}] (* or *)
    CoefficientList[Series[(1 + 4 x - 15 x^3 + 6 x^4 - 6 x^5)/((-1 + x)^2 (1 - 5 x^2 + 6 x^4)), {x, 0, 28}], x] (* or *)
    LinearRecurrence[{2, 4, -10, -1, 12, -6}, {1, 6, 16, 31, 71, 106}, 29]
  • PARI
    Vec((1+4*x-15*x^3+6*x^4-6*x^5) / ((-1+x)^2*(1-5*x^2+6*x^4)) + O(x^40)) \\ Colin Barker, Dec 30 2016

Formula

a(n) = 5*(Sum_{i=0..((n+(n mod 2))/2)} 2^i + Sum_{j=0..((n-(n mod 2))/2)} 3^j) - 5*n - 9.
a(n) = a(n-1) + 5*((2+((n+1) mod 2))^((n+(n mod 2))/2) - 1) for n>0.
G.f.: (1+4*x-15*x^3+6*x^4-6*x^5)/((-1+x)^2*(1-5*x^2+6*x^4)).
From Colin Barker, Dec 30 2016: (Start)
a(n) = (-10*n + 5*3^(n/2+1) + 5*2^(n/2+2) - 33)/2 for n even.
a(n) = (-10*n + 5*3^(n/2+1/2) + 5*2^(n/2+5/2) - 33)/2 for n odd.
(End)

A279830 a(n) = the least integer that is centered polygonal in exactly n ways.

Original entry on oeis.org

4, 7, 37, 31, 91, 181, 211, 421, 631, 1891, 1261, 2521, 6931, 18481, 20791, 13861, 27721, 41581, 83161, 138601, 245701, 235621, 180181, 556921, 360361, 540541, 1670761, 1081081, 1413721, 2702701, 2162161, 6486481, 3063061, 8288281, 13430341, 6846841, 10270261, 6126121
Offset: 1

Views

Author

Daniel Sterman, Dec 20 2016

Keywords

Comments

a(n) has exactly n representations as a centered r-gonal number P(r,m) = 1 + r*m*(m+1)/2, with m > 1, r > 0.
a(n) appears n+1 times in A101321, due to the second column containing every positive integer.
a(n)-1 is the first appearance of n+1 in A007862.

Examples

			a(4)=31, because 31 is a centered triangular number (A005448), a centered pentagonal number (A005891), a centered decagonal number (A062786), and a central polygonal number (A002061). No number less than 31 has 4 representations.
		

Crossrefs

Cf. A007862 (see alternative definition: the number of ways to represent n+1 as a centered polygonal number).
Cf. A063778 (the equivalent for polygonal numbers).
Subset of A275340 (the list of nontrivial centered polygonal numbers).
Subset of A101321 (centered polygonal numbers read by antidiagonals).

Programs

  • Mathematica
    f[n_] := Length@Select[Divisors[2 n - 2], IntegerQ@Sqrt[1 + 4 #] &] - 1;
    Do[If[IntegerQ[A279830[f[i]]], , A279830[f[i]] = i], {i, 10000}];
    A279830 /@ Range[13]
    (* Davin Park, Dec 28 2016 *)

Extensions

Corrected and extended by Davin Park, Dec 27 2016
Previous Showing 71-80 of 90 results. Next