cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 43 results. Next

A244065 Pseudoprimes to base 3 that are not squarefree.

Original entry on oeis.org

121, 3751, 4961, 7381, 11011, 29161, 32791, 142901, 228811, 239701, 341341, 551881, 566401, 595441, 671671, 784201, 856801, 1016521, 1237951, 1335961, 1433971, 1804231
Offset: 1

Views

Author

Felix Fröhlich, Jun 19 2014

Keywords

Comments

Must be divisible by the square of a Mirimanoff prime, A014127. - Charles R Greathouse IV, Jun 21 2014

Crossrefs

Programs

  • PARI
    for(n=2, 10^9, if(!isprime(n) && Mod(3, n)^(n-1)==1 && !issquarefree(n), print1(n, ", ")))
    
  • PARI
    list(lim)=my(M=[11,1006003],v=List(),p2);for(i=1,#M,p2=M[i]^2;forstep(n=p2,lim,p2,if(Mod(3,n)^(n-1)==1,listput(v,n))));Set(v) \\ Good for lim <= 9.4 * 10^29; Charles R Greathouse IV, Jun 21 2014

A114245 Number of Fermat pseudoprimes to base 3 less than 10^n.

Original entry on oeis.org

0, 1, 6, 23, 78, 246, 760, 2155, 5804, 15472, 39871, 102839, 264461
Offset: 1

Views

Author

Eric W. Weisstein, Nov 18 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Count[Select[Range[2, 10^6], ! PrimeQ[#] && PowerMod[3, # - 1, #] == 1 &], x_ /; x < 10^n], {n, 6}]  (* Robert Price, Jun 09 2019 *)
  • PARI
    isFps(n,b)= { if(isprime(n), return(0) ) ; if( (b^(n-1)) % n == 1, return(1), return(0) ) ; } { a=0 ; e=1 ; for(n=1,10^12, if( n == 10^e, e++ ; print(a) ; ) ; a += isFps(n,3) ; ) ; } \\ R. J. Mathar, Feb 10 2007

Formula

A005935(a(n)) < 10^n; A005935(a(n)+1) > 10^n. - R. J. Mathar, Feb 10 2007

Extensions

a(9)-a(10) from Washington Bomfim, Mar 02 2012
a(11)-a(12) from Hiroaki Yamanouchi, Sep 25 2015
a(13) from Mikuš (2010) added by Amiram Eldar, Mar 31 2024

A258189 Pseudoprimes to base 3, written in base 3.

Original entry on oeis.org

10101, 11111, 101121, 220212, 222001, 1022011, 1111221, 2010002, 2101001, 2121001, 10101022, 10122201, 10201001, 10212111, 11111112, 11121201, 12010221, 20210202, 21121121, 100001111, 101010101, 102112011, 110020001, 112112001, 120002211, 122000101, 201201201, 202212002
Offset: 1

Views

Author

Abdul Gaffar Khan, Sep 11 2015

Keywords

Crossrefs

Cf. A005935 (pseudoprimes to base 3), A007089 (numbers in base 3).

Programs

  • Mathematica
    base = 3; t = {}; n = 1;
    While[Length[t] < 40, n++;
    If[! PrimeQ[n] && PowerMod[base, n - 1, n] == 1,
      AppendTo[t, FromDigits@IntegerDigits[n, 3]]]]; t
  • PARI
    lista(nn, b=3) = {for (n=1, nn, if (Mod(b, n)^(n-1)==1 && !ispseudoprime(n) && n>1, print1(subst(Pol(digits(n,b), x), x, 10), ", ");););} \\ Michel Marcus, Sep 30 2015

Formula

a(n) = A007089(A005935(n)). - Michel Marcus, Sep 11 2015

Extensions

a(25) corrected by Georg Fischer, Dec 18 2020

A083739 Pseudoprimes to bases 2, 3, 5 and 7.

Original entry on oeis.org

29341, 46657, 75361, 115921, 162401, 252601, 294409, 314821, 334153, 340561, 399001, 410041, 488881, 512461, 530881, 552721, 658801, 721801, 852841, 1024651, 1152271, 1193221, 1461241, 1569457, 1615681, 1857241, 1909001, 2100901
Offset: 1

Views

Author

Serhat Sevki Dincer (sevki(AT)ug.bilkent.edu.tr), May 05 2003

Keywords

Examples

			a(1)=29341 since it is the first number such that 2^(k-1) = 1 (mod k), 3^(k-1) = 1 (mod k), 5^(k-1) = 1 (mod k) and 7^(k-1) = 1 (mod k).
		

Crossrefs

Proper subset of A083737.

Programs

  • Maple
    a001567 := [] : f := fopen("b001567.txt",READ) : bfil := readline(f) : while StringTools[WordCount](bfil) > 0 do if StringTools[FirstFromLeft]("#",bfil ) <> 0 then ; else bfil := sscanf(bfil,"%d %d") ; a001567 := [op(a001567), op(2,bfil) ] ; fi ; bfil := readline(f) ; od: fclose(f) : isPsp := proc(n,b) if n>3 and not isprime(n) and b^(n-1) mod n = 1 then true; else false; fi; end: isA001567 := proc(n) isPsp(n,2) ; end: isA005935 := proc(n) isPsp(n,3) ; end: isA005936 := proc(n) isPsp(n,5) ; end: isA005938 := proc(n) isPsp(n,7) ; end: isA083739 := proc(n) if isA001567(n) and isA005935(n) and isA005936(n) and isA005938(n) then true ; else false ; fi ; end: n := 1: for psp2 from 1 do i := op(psp2,a001567) ; if isA083739(i) then printf("%d %d ",n,i) ; n :=n+1 ; fi ; od: # R. J. Mathar, Feb 07 2008
  • Mathematica
    Select[ Range[2113920], !PrimeQ[ # ] && PowerMod[2, # - 1, # ] == 1 && PowerMod[3, 1 - 1, # ] == 1 && PowerMod[5, # - 1, # ] == 1 && PowerMod[7, 1 - 1, # ] == 1 & ]
  • PARI
    is(n)=!isprime(n)&&Mod(2,n)^(n-1)==1&&Mod(3,n)^(n-1)==1&&Mod(5,n)^(n-1)==1&&Mod(7,n)^(n-1)==1 \\ Charles R Greathouse IV, Apr 12 2012

Formula

a(n) = n-th positive integer k(>1) such that 2^(k-1) = 1 (mod k), 3^(k-1) = 1 (mod k), 5^(k-1) = 1 (mod k) and 7^(k-1) = 1 (mod k).
A005938 INTERSECT A083737. - R. J. Mathar, Feb 07 2008

Extensions

Edited by Robert G. Wilson v, May 06 2003

A210461 Cipolla pseudoprimes to base 3: (9^p-1)/8 for any odd prime p.

Original entry on oeis.org

91, 7381, 597871, 3922632451, 317733228541, 2084647712458321, 168856464709124011, 1107867264956562636991, 588766087155780604365200461, 47690053059618228953581237351, 25344449488056571213320166359119221, 166284933091139163730593611482181209801
Offset: 1

Views

Author

Bruno Berselli, Jan 22 2013 - proposed by Umberto Cerruti (Department of Mathematics "Giuseppe Peano", University of Turin, Italy)

Keywords

Comments

This is the case a=3 of Theorem 1 in the paper of Hamahata and Kokubun (see Links section).

Examples

			91 is in the sequence because 91=((3^3-1)/2)*((3^3+1)/4), even if p=3 divides 3*(3^2-1), and 3^90 = (91*8+1)^15 == 1 (mod 91).
7381 is in the sequence because 7381=((3^5-1)/2)*((3^5+1)/4) and 3^7380 = (7381*472400+1)^369 == 1 (mod 7381).
		

References

  • Michele Cipolla, Sui numeri composti P che verificano la congruenza di Fermat a^(P-1) = 1 (mod P), Annali di Matematica 9 (1904), p. 139-160.

Crossrefs

Programs

  • Haskell
    a210461 = (`div` 8) . (subtract 1) . (9 ^) . a065091
    -- Reinhard Zumkeller, Jan 22 2013
  • Magma
    [(9^NthPrime(n)-1)/8: n in [2..12]];
    
  • Maple
    P:=proc(q)local n;
    for n from 2 to q do print((9^ithprime(n)-1)/8);
    od; end: P(100); # Paolo P. Lava, Oct 11 2013
  • Mathematica
    (9^# - 1)/8 & /@ Prime[Range[2, 12]]
  • Maxima
    Prime(n) := block(if n = 1 then return(2), return(next_prime(Prime(n-1))))$
    makelist((9^Prime(n)-1)/8, n, 2, 12);
    

A328662 Super pseudoprimes (or superpseudoprimes) to base 3: Fermat pseudoprimes to base 3 all of whose divisors that are larger than 1 are either primes or Fermat pseudoprimes to base 3.

Original entry on oeis.org

91, 121, 671, 703, 949, 1541, 1891, 2701, 3281, 7381, 8401, 12403, 14383, 15203, 16531, 18721, 23521, 24727, 28009, 30857, 31621, 31697, 38503, 44287, 46999, 47197, 49051, 49141, 55261, 55969, 63139, 72041, 74593, 79003, 82513, 83333, 88573, 88831, 90751, 96139
Offset: 1

Views

Author

Amiram Eldar, Oct 24 2019

Keywords

Comments

The super pseudoprimes to base 2 are the super-Poulet numbers (A050217).
Includes all the semiprimes in A005935. The first terms that are not semiprimes are 7381, 512461, 532171, 1018601, ... (A328663).
Subsequence of A271116. - Bill McEachen, Nov 06 2020

Examples

			91 is in the sequence since it is a Fermat pseudoprime to base 3, and its proper divisors that are larger than 1 are the primes 7 and 13.
7381 is in the sequence since it is a Fermat pseudoprime to base 3, and its proper divisors that are larger than 1 are the primes 11 and 61, and the composite numbers 121 and 671 that are Fermat pseudoprimes to base 3.
		

References

  • Michal Krížek, Florian Luca, and Lawrence Somer, 17 Lectures on Fermat Numbers: From Number Theory to Geometry, Springer-Verlag, New York, 2001, chapter 12, Fermat's Little Theorem, Pseudoprimes, and Superpseudoprimes, pp. 130-146.

Crossrefs

Subsequence of A005935.
Cf. A050217.

Programs

  • Mathematica
    aQ[n_]:=  CompositeQ[n] && AllTrue[Rest[Divisors[n]], PowerMod[3, #-1, #] == 1 &]; Select[Range[10^5], aQ]

A328663 Super pseudoprimes to base 3 (A328662) with more than two prime factors (counted with multiplicity).

Original entry on oeis.org

7381, 512461, 532171, 1018601, 2044657, 3882139, 5934391, 8624851, 10802017, 14396449, 19383673, 25708453, 32285041, 35728129, 35807461, 38316961, 43040161, 53369149, 58546753, 59162891, 64464919, 71386849, 75397891, 79511671, 81276859, 83083001, 84890737, 85636609
Offset: 1

Views

Author

Amiram Eldar, Oct 24 2019

Keywords

Comments

Super pseudoprimes to base 3 are Fermat pseudoprimes to base 3 all of whose composite divisors are also Fermat pseudoprimes to base 3. Therefore all the Fermat pseudoprimes to base 3 that are semiprimes are super pseudoprimes. This sequence contains the nontrivial terms of A328662, i.e. terms with at least one composite proper divisor.
Fehér and Kiss proved that there are infinitely many terms with 3 distinct prime factors (their proof was for all bases a > 1 that are not divisible by 4. Phong proved it for all bases a > 1).
The first term, 7381, is not squarefree. What is the next such term?

Examples

			512461 is in the sequence since it is a Fermat pseudoprime to base 3, 3^512460 == 1 (mod 512461), and all of its divisors that are larger than 1 are either primes (31, 61, and 271), or Fermat pseudoprimes to base 3 (1891, 8401, 16531, 512461).
		

References

  • Michal Krížek, Florian Luca, and Lawrence Somer, 17 Lectures on Fermat Numbers: From Number Theory to Geometry, Springer-Verlag, New York, 2001, chapter 12, Fermat's Little Theorem, Pseudoprimes, and Superpseudoprimes, pp. 130-146.

Crossrefs

Subsequence of A005935, A328662.

Programs

  • Mathematica
    aQ[n_]:=  PrimeOmega[n] > 2 && AllTrue[Rest[Divisors[n]], PowerMod[3, #-1, #] == 1 &]; Select[Range[10^5], aQ]

A000864 Deceptive nonprimes: composite numbers k that divide the repunit R_{k-1}.

Original entry on oeis.org

91, 259, 451, 481, 703, 1729, 2821, 2981, 3367, 4141, 4187, 5461, 6533, 6541, 6601, 7471, 7777, 8149, 8401, 8911, 10001, 11111, 12403, 13981, 14701, 14911, 15211, 15841, 19201, 21931, 22321, 24013, 24661, 27613, 29341, 34133
Offset: 1

Views

Author

Tim Ray (c268scm(AT)semovm.semo.edu)

Keywords

Comments

Francis and Ray call these numbers "deceptive primes".
Pseudoprimes to base 10, A005939, not divisible by 3. If k is in the sequence, then (10^k-1)/9 is in the sequence, by Steuerwald's theorem; see A005935. - Thomas Ordowski, Apr 10 2016
41041 is the first term that has four prime divisors. - Altug Alkan, Apr 10 2016

Crossrefs

Programs

  • Maple
    select(t -> not isprime(t) and (10&^(t-1) - 1) mod (9*t) = 0, [seq(t,t=3..10^5,2)]); # Robert Israel, Apr 10 2016
  • PARI
    p=5;forprime(q=7,1e5,forstep(n=p+2,q-2,2,if(n%5 && Mod(10,9*n)^(n-1)==1,print1(n", ")));p=q) \\ Charles R Greathouse IV, Jul 31 2011

A083735 Pseudoprimes to bases 3 and 7.

Original entry on oeis.org

703, 1105, 2465, 10585, 18721, 19345, 29341, 38503, 46657, 50881, 75361, 76627, 88831, 104653, 115921, 146611, 162401, 188191, 213265, 226801, 252601, 278545, 286903, 294409, 314821, 334153, 340561, 359341, 385003, 385201, 399001, 410041
Offset: 1

Views

Author

Serhat Sevki Dincer (sevki(AT)ug.bilkent.edu.tr), May 05 2003

Keywords

Examples

			a(1)=703 since it is the first number such that 3^(k-1) = 1 (mod k) and 7^(k-1) = 1 (mod k).
		

Crossrefs

Intersection of A005935 and A005938. - R. J. Mathar, Apr 05 2011

Programs

  • Mathematica
    Select[Range[420000],!PrimeQ[#]&&PowerMod[3,#-1,#]==1&&PowerMod[7,#-1,#] == 1&] (* Harvey P. Dale, Mar 08 2014 *)
  • PARI
    is(n)=!isprime(n)&&Mod(7,n)^(n-1)==1&&Mod(3,n)^(n-1)==1 \\ Charles R Greathouse IV, Apr 12 2012

Formula

a(n) = n-th positive integer k(>1) such that 3^(k-1) = 1 (mod k) and 7^(k-1) = 1 (mod k).

A271116 Integers n such that round(3^n/12) is divisible by n.

Original entry on oeis.org

1, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 91, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307
Offset: 1

Views

Author

Altug Alkan, Mar 31 2016

Keywords

Comments

In other words, numbers n such that A015518(n-1) is divisible by n.
This sequence generates prime numbers except 2 and 3.
The first few composite terms in this sequence are 91, 121, 671, 703, 949. Note that they are pseudoprimes to base 3.
Also, numbers k such that 3^(k-1) mod (4*k) = 1. In the first million terms only 908 terms are nonprimes. - David A. Corneth, Oct 02 2020

Examples

			5 is a term because round(3^5/12) = 20 is divisible by 5.
6 is not a term because round(3^6/12) = 61 which is not divisible by 6. - _David A. Corneth_, Oct 02 2020
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 308, Divisible[Round[3^#/12], #] &] (* Michael De Vlieger, Mar 31 2016 *)
  • PARI
    f(n) = round(3^n/12);
    for(n=1, 1e3, if(f(n) % n == 0, print1(n, ", ")));
    
  • PARI
    is(n) = lift(Mod(3, 4*n)^(n-1))==1 \\ David A. Corneth, Oct 02 2020
Previous Showing 11-20 of 43 results. Next