cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A336807 a(n) = (n!)^2 * Sum_{k=0..n} 4^(n-k) / (k!)^2.

Original entry on oeis.org

1, 5, 81, 2917, 186689, 18668901, 2688321745, 526911062021, 134889231877377, 43704111128270149, 17481644451308059601, 8461115914433100846885, 4873602766713466087805761, 3294555470298303075356694437, 2582931488713869611079648438609, 2324638339842482649971683594748101
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 27 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n!^2 Sum[4^(n - k)/k!^2, {k, 0, n}], {n, 0, 15}]
    nmax = 15; CoefficientList[Series[BesselI[0, 2 Sqrt[x]]/(1 - 4 x), {x, 0, nmax}], x] Range[0, nmax]!^2

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = BesselI(0,2*sqrt(x)) / (1 - 4*x).
a(0) = 1; a(n) = 4 * n^2 * a(n-1) + 1.

A336808 a(n) = (n!)^2 * Sum_{k=0..n} 5^(n-k) / (k!)^2.

Original entry on oeis.org

1, 6, 121, 5446, 435681, 54460126, 9802822681, 2401691556846, 768541298190721, 311259225767242006, 155629612883621003001, 94155915794590706815606, 67792259372105308907236321, 57284459169428986026614691246, 56138769986040406306082397421081, 63156116234295457094342697098716126
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 27 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n!^2 Sum[5^(n - k)/k!^2, {k, 0, n}], {n, 0, 15}]
    nmax = 15; CoefficientList[Series[BesselI[0, 2 Sqrt[x]]/(1 - 5 x), {x, 0, nmax}], x] Range[0, nmax]!^2

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = BesselI(0,2*sqrt(x)) / (1 - 5*x).
a(0) = 1; a(n) = 5 * n^2 * a(n-1) + 1.

A180255 a(n) = n^2 * a(n-1) + n, a(0)=0.

Original entry on oeis.org

0, 1, 6, 57, 916, 22905, 824586, 40404721, 2585902152, 209458074321, 20945807432110, 2534442699285321, 364959748697086236, 61678197529807573897, 12088926715842284483826, 2720008511064514008860865, 696322178832515586268381456, 201237109682597004431562240801
Offset: 0

Views

Author

Groux Roland, Jan 17 2011

Keywords

Comments

Integral_{x=0..1} x^n*BesselI(0,2*x^(1/2)) dx = A006040(n)*BesselI(1,2) - a(n)*BesselI(0,2). An elementary consequence is the irrationality of BesselI(0,2)/BesselI(1,2).

Crossrefs

Programs

  • Mathematica
    FoldList[#2^2*# + #2 &, Range[0, 20]] (* Paolo Xausa, Jun 19 2025 *)
  • Maxima
    a[0]:0$ a[n]:=n^2*a[n-1]+n$ makelist(a[n], n, 0, 15); /* Bruno Berselli, May 23 2011 */
  • PARI
    a(n)=if(n==0,0,(n)^2*a(n-1)+(n));
    for(n=0,12,print1(a(n),", "));  /* show terms */
    

Formula

From Seiichi Manyama, Jan 05 2024: (Start)
a(n) = (n!)^2 * Sum_{k=0..n} k/(k!)^2.
a(n) = n * A228229(n-1) for n > 0. (End)

A188808 T(n,k)=Number of nXk array permutations with each element remaining in its original row or its original column.

Original entry on oeis.org

1, 2, 2, 6, 9, 6, 24, 82, 82, 24, 120, 1313, 2720, 1313, 120, 720, 32826, 194568, 194568, 32826, 720, 5040, 1181737, 26101232, 72104097, 26101232, 1181737, 5040, 40320, 57905114, 5919004912, 57951767544, 57951767544, 5919004912, 57905114, 40320
Offset: 1

Views

Author

R. H. Hardin Apr 11 2011

Keywords

Comments

Table starts
.....1........2..........6..........24.........120........720..........5040
.....2........9.........82........1313.......32826....1181737......57905114
.....6.......82.......2720......194568....26101232.5919004912.2103543163584
....24.....1313.....194568....72104097.57951767544
...120....32826...26101232.57951767544
...720..1181737.5919004912
..5040.57905114
.40320

Examples

			Some solutions for 4X3
..3..2.11....3..0..8....0.10..8....3..0..1....0.10.11....0..4..8....1..2..0
..9..1..4....4..1..5....6..7..3....9..7.11....6..5..4....3..1..5....6..4..5
..6..8..7....7..6.11....9..4..5....8.10..5....9..8..7....6..7..2....9..7..8
..0.10..5...10..9..2...11..1..2....6..4..2....3..1..2...11.10..9....3.10.11
		

Crossrefs

Column 1 is A000142
Column 2 is A006040(n+1)

A193563 a(0) = 0, a(n) = n^2 * (a(n-1) + 1).

Original entry on oeis.org

0, 1, 8, 81, 1312, 32825, 1181736, 57905113, 3705927296, 300180111057, 30018011105800, 3632179343801921, 523033825507476768, 88392716510763573961, 17324972436109660496552, 3898118798124673611724425, 997918412319916444601453056
Offset: 0

Views

Author

Meherzad Lahewala, Jul 31 2011

Keywords

Crossrefs

Cf. A006040, A007526 (multiply by n instead of n^2), A180255.

Programs

  • Maple
    seq(n!^2*add(1/k!^2,k=0..n-1),n=0..16);   # Mark van Hoeij, May 13 2013
  • Mathematica
    FoldList[#2^2*(# + 1) &, Range[0, 20]] (* Paolo Xausa, Jun 18 2025 *)
  • PARI
    a=[0];for(n=1,20,a=concat(a,(a[#a]+1)*n^2));a \\ Charles R Greathouse IV, Jul 31 2011

Formula

From Seiichi Manyama, Jan 05 2024: (Start)
a(n) = (n!)^2 * Sum_{k=0..n} (k/k!)^2.
a(n) = n^2 * A006040(n-1) for n > 0. (End)
a(n) = Sum_{k=1..n} (k!*binomial(n,k))^2. - Ridouane Oudra, Jun 14 2025
a(n) = n^2 + BesselI(0,2)*(n!)^2 - n^2*hypergeom([1], [n, n], 1) for n > 0. - Stefano Spezia, Jun 14 2025

A228230 Recurrence a(n) = (1/2)*n*(n+1)*a(n-1) + 1 with a(0) = 1.

Original entry on oeis.org

1, 2, 7, 43, 431, 6466, 135787, 3802037, 136873333, 6159299986, 338761499231, 22358258949247, 1743944198041267, 158698922021755298, 16663386812284306291, 1999606417474116754921, 271946472776479878669257, 41607810334801421436396322, 7114935567251043065623771063
Offset: 0

Views

Author

Peter Bala, Aug 19 2013

Keywords

Comments

Cf. A006040 and A228229.

Crossrefs

Programs

  • Maple
    #A228230
    a:=proc(n) option remember
    if n = 0 then 1 else 1/2n(n+1)thisproc(n-1) + 1
    fi
    end:
    seq(a(n), n = 0..20);

Formula

a(n) = (1/2^n)*n!*(n + 1)!*Sum_{k = 0..n} 2^k/(k!*(k + 1)!).
a(n) = n!*(n+1)!*(the coefficient of x^n*y^(n+1) in the expansion of exp(x + y)/(1 - x*y/2)).
G.f.: (1/(1 - x/2))*(1/sqrt(x))*BesselI(1, 2*sqrt(x)) = Sum_{n >= 0} a(n)*x^n/(n!*(n + 1)!).
Defining recurrence equation: a(n) = (1/2)*n*(n + 1)*a(n-1) + 1 with a(0) = 1.
Alternative recurrence equation: a(0) = 1, a(1) = 2, and for n >= 2, a(n) = ((1/2)*n*(n+1) + 1)*a(n-1) - (1/2)*n*(n - 1)*a(n-2).
The sequence b(n) := (1/2^n)*n!*(n + 1)! satisfies the same recurrence with the initial conditions b(0) = 1, b(1) = 1. It follows that we have the finite continued fraction expansion a(n) = (1/2^n)* n!*(n + 1)!*(1 + 1/(1 - 1/(4 - 3/(7 - ... - 1/2*n*(n - 1)/(1/2*n*(n + 1) + 1))))). Taking the limit yields the continued fraction expansion (1/sqrt(2))*BesselI(1,2*sqrt(2)) = Sum_{k >= 0} 2^k/(k!*(k + 1)!) = 1 + 1/(1 - 1/(4 - 3/(7 - 6/(11 - ... - (1/2)*n*(n - 1)/((1/2)*n*(n + 1) + 1 - ...))))) = 2.394833097....

Extensions

Typo in the first formula corrected by Vaclav Kotesovec, Jul 02 2015

A336291 a(n) = (n!)^2 * Sum_{k=1..n} 1 / (k * ((n-k)!)^2).

Original entry on oeis.org

0, 1, 6, 39, 424, 7905, 227766, 9324511, 512970144, 36452217969, 3247711402870, 354391640998791, 46474986465907176, 7210874466760191409, 1306387103147257800774, 273269900360634449732895, 65363179181419926246184576, 17726298367452515070739268001
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 16 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n!)^2 Sum[1/(k ((n - k)!)^2), {k, 1, n}], {n, 0, 17}]
    nmax = 17; CoefficientList[Series[-Log[1 - x] BesselI[0, 2 Sqrt[x]], {x, 0, nmax}], x] Range[0, nmax]!^2
  • PARI
    a(n) = (n!)^2 * sum(k=1, n, 1 / (k * ((n-k)!)^2)); \\ Michel Marcus, Jul 17 2020

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = -log(1 - x) * BesselI(0,2*sqrt(x)).
a(n) ~ BesselI(0,2) * (n!)^2 / n. - Vaclav Kotesovec, Jul 17 2020
a(n) = Sum_{k=1..n} (k-1)!*k!*binomial(n,k)^2. - Ridouane Oudra, Jun 15 2025

A343863 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = (n!)^k * Sum_{j=1..n} (1/j!)^k.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 2, 5, 4, 1, 2, 9, 16, 5, 1, 2, 17, 82, 65, 6, 1, 2, 33, 460, 1313, 326, 7, 1, 2, 65, 2674, 29441, 32826, 1957, 8, 1, 2, 129, 15796, 684545, 3680126, 1181737, 13700, 9, 1, 2, 257, 94042, 16175105, 427840626, 794907217, 57905114, 109601, 10
Offset: 0

Views

Author

Seiichi Manyama, May 02 2021

Keywords

Examples

			Square array begins:
  1,   1,     1,       1,         1,           1, ...
  2,   2,     2,       2,         2,           2, ...
  3,   5,     9,      17,        33,          65, ...
  4,  16,    82,     460,      2674,       15796, ...
  5,  65,  1313,   29441,    684545,    16175105, ...
  6, 326, 32826, 3680126, 427840626, 50547203126, ...
		

Crossrefs

Columns 0..3 give A000027(n+1), A000522, A006040, A217284.
Main diagonal gives A336247.
Cf. A291556.

Programs

  • Mathematica
    T[n_, k_] := Sum[(n!/j!)^k, {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 03 2021 *)
  • PARI
    T(n, k) = sum(j=0, n, (n!/j!)^k);

Formula

T(0,k) = 1 and T(n,k) = n^k * T(n-1,k) + 1 for n > 0.

A354302 a(n) is the numerator of Sum_{k=0..n} 1 / (k!)^2.

Original entry on oeis.org

1, 2, 9, 41, 1313, 5471, 1181737, 28952557, 1235309099, 150090055529, 30018011105801, 201787741322329, 523033825507476769, 44196358255381786981, 5774990812036553498851, 1949059399062336805862213, 997918412319916444601453057, 3697415655903280160125896583
Offset: 0

Views

Author

Ilya Gutkovskiy, May 23 2022

Keywords

Examples

			1, 2, 9/4, 41/18, 1313/576, 5471/2400, 1181737/518400, 28952557/12700800, 1235309099/541900800, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[1/(k!)^2, {k, 0, n}], {n, 0, 17}] // Numerator
    nmax = 17; CoefficientList[Series[BesselI[0, 2 Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Numerator

Formula

Numerators of coefficients in expansion of BesselI(0,2*sqrt(x)) / (1 - x).

A354303 a(n) is the denominator of Sum_{k=0..n} 1 / (k!)^2.

Original entry on oeis.org

1, 1, 4, 18, 576, 2400, 518400, 12700800, 541900800, 65840947200, 13168189440000, 88519495680000, 229442532802560000, 19387894021816320000, 2533351485517332480000, 855006126362099712000000, 437763136697395052544000000, 1621968544942912438272000000
Offset: 0

Views

Author

Ilya Gutkovskiy, May 23 2022

Keywords

Examples

			1, 2, 9/4, 41/18, 1313/576, 5471/2400, 1181737/518400, 28952557/12700800, 1235309099/541900800, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[1/(k!)^2, {k, 0, n}], {n, 0, 17}] // Denominator
    nmax = 17; CoefficientList[Series[BesselI[0, 2 Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Denominator

Formula

Denominators of coefficients in expansion of BesselI(0,2*sqrt(x)) / (1 - x).
Previous Showing 11-20 of 29 results. Next