A336807
a(n) = (n!)^2 * Sum_{k=0..n} 4^(n-k) / (k!)^2.
Original entry on oeis.org
1, 5, 81, 2917, 186689, 18668901, 2688321745, 526911062021, 134889231877377, 43704111128270149, 17481644451308059601, 8461115914433100846885, 4873602766713466087805761, 3294555470298303075356694437, 2582931488713869611079648438609, 2324638339842482649971683594748101
Offset: 0
-
Table[n!^2 Sum[4^(n - k)/k!^2, {k, 0, n}], {n, 0, 15}]
nmax = 15; CoefficientList[Series[BesselI[0, 2 Sqrt[x]]/(1 - 4 x), {x, 0, nmax}], x] Range[0, nmax]!^2
A336808
a(n) = (n!)^2 * Sum_{k=0..n} 5^(n-k) / (k!)^2.
Original entry on oeis.org
1, 6, 121, 5446, 435681, 54460126, 9802822681, 2401691556846, 768541298190721, 311259225767242006, 155629612883621003001, 94155915794590706815606, 67792259372105308907236321, 57284459169428986026614691246, 56138769986040406306082397421081, 63156116234295457094342697098716126
Offset: 0
-
Table[n!^2 Sum[5^(n - k)/k!^2, {k, 0, n}], {n, 0, 15}]
nmax = 15; CoefficientList[Series[BesselI[0, 2 Sqrt[x]]/(1 - 5 x), {x, 0, nmax}], x] Range[0, nmax]!^2
A180255
a(n) = n^2 * a(n-1) + n, a(0)=0.
Original entry on oeis.org
0, 1, 6, 57, 916, 22905, 824586, 40404721, 2585902152, 209458074321, 20945807432110, 2534442699285321, 364959748697086236, 61678197529807573897, 12088926715842284483826, 2720008511064514008860865, 696322178832515586268381456, 201237109682597004431562240801
Offset: 0
-
FoldList[#2^2*# + #2 &, Range[0, 20]] (* Paolo Xausa, Jun 19 2025 *)
-
a[0]:0$ a[n]:=n^2*a[n-1]+n$ makelist(a[n], n, 0, 15); /* Bruno Berselli, May 23 2011 */
-
a(n)=if(n==0,0,(n)^2*a(n-1)+(n));
for(n=0,12,print1(a(n),", ")); /* show terms */
A188808
T(n,k)=Number of nXk array permutations with each element remaining in its original row or its original column.
Original entry on oeis.org
1, 2, 2, 6, 9, 6, 24, 82, 82, 24, 120, 1313, 2720, 1313, 120, 720, 32826, 194568, 194568, 32826, 720, 5040, 1181737, 26101232, 72104097, 26101232, 1181737, 5040, 40320, 57905114, 5919004912, 57951767544, 57951767544, 5919004912, 57905114, 40320
Offset: 1
Some solutions for 4X3
..3..2.11....3..0..8....0.10..8....3..0..1....0.10.11....0..4..8....1..2..0
..9..1..4....4..1..5....6..7..3....9..7.11....6..5..4....3..1..5....6..4..5
..6..8..7....7..6.11....9..4..5....8.10..5....9..8..7....6..7..2....9..7..8
..0.10..5...10..9..2...11..1..2....6..4..2....3..1..2...11.10..9....3.10.11
A193563
a(0) = 0, a(n) = n^2 * (a(n-1) + 1).
Original entry on oeis.org
0, 1, 8, 81, 1312, 32825, 1181736, 57905113, 3705927296, 300180111057, 30018011105800, 3632179343801921, 523033825507476768, 88392716510763573961, 17324972436109660496552, 3898118798124673611724425, 997918412319916444601453056
Offset: 0
-
seq(n!^2*add(1/k!^2,k=0..n-1),n=0..16); # Mark van Hoeij, May 13 2013
-
FoldList[#2^2*(# + 1) &, Range[0, 20]] (* Paolo Xausa, Jun 18 2025 *)
-
a=[0];for(n=1,20,a=concat(a,(a[#a]+1)*n^2));a \\ Charles R Greathouse IV, Jul 31 2011
A228230
Recurrence a(n) = (1/2)*n*(n+1)*a(n-1) + 1 with a(0) = 1.
Original entry on oeis.org
1, 2, 7, 43, 431, 6466, 135787, 3802037, 136873333, 6159299986, 338761499231, 22358258949247, 1743944198041267, 158698922021755298, 16663386812284306291, 1999606417474116754921, 271946472776479878669257, 41607810334801421436396322, 7114935567251043065623771063
Offset: 0
A336291
a(n) = (n!)^2 * Sum_{k=1..n} 1 / (k * ((n-k)!)^2).
Original entry on oeis.org
0, 1, 6, 39, 424, 7905, 227766, 9324511, 512970144, 36452217969, 3247711402870, 354391640998791, 46474986465907176, 7210874466760191409, 1306387103147257800774, 273269900360634449732895, 65363179181419926246184576, 17726298367452515070739268001
Offset: 0
-
Table[(n!)^2 Sum[1/(k ((n - k)!)^2), {k, 1, n}], {n, 0, 17}]
nmax = 17; CoefficientList[Series[-Log[1 - x] BesselI[0, 2 Sqrt[x]], {x, 0, nmax}], x] Range[0, nmax]!^2
-
a(n) = (n!)^2 * sum(k=1, n, 1 / (k * ((n-k)!)^2)); \\ Michel Marcus, Jul 17 2020
A343863
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = (n!)^k * Sum_{j=1..n} (1/j!)^k.
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 1, 2, 5, 4, 1, 2, 9, 16, 5, 1, 2, 17, 82, 65, 6, 1, 2, 33, 460, 1313, 326, 7, 1, 2, 65, 2674, 29441, 32826, 1957, 8, 1, 2, 129, 15796, 684545, 3680126, 1181737, 13700, 9, 1, 2, 257, 94042, 16175105, 427840626, 794907217, 57905114, 109601, 10
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
2, 2, 2, 2, 2, 2, ...
3, 5, 9, 17, 33, 65, ...
4, 16, 82, 460, 2674, 15796, ...
5, 65, 1313, 29441, 684545, 16175105, ...
6, 326, 32826, 3680126, 427840626, 50547203126, ...
-
T[n_, k_] := Sum[(n!/j!)^k, {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 03 2021 *)
-
T(n, k) = sum(j=0, n, (n!/j!)^k);
A354302
a(n) is the numerator of Sum_{k=0..n} 1 / (k!)^2.
Original entry on oeis.org
1, 2, 9, 41, 1313, 5471, 1181737, 28952557, 1235309099, 150090055529, 30018011105801, 201787741322329, 523033825507476769, 44196358255381786981, 5774990812036553498851, 1949059399062336805862213, 997918412319916444601453057, 3697415655903280160125896583
Offset: 0
1, 2, 9/4, 41/18, 1313/576, 5471/2400, 1181737/518400, 28952557/12700800, 1235309099/541900800, ...
-
Table[Sum[1/(k!)^2, {k, 0, n}], {n, 0, 17}] // Numerator
nmax = 17; CoefficientList[Series[BesselI[0, 2 Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Numerator
A354303
a(n) is the denominator of Sum_{k=0..n} 1 / (k!)^2.
Original entry on oeis.org
1, 1, 4, 18, 576, 2400, 518400, 12700800, 541900800, 65840947200, 13168189440000, 88519495680000, 229442532802560000, 19387894021816320000, 2533351485517332480000, 855006126362099712000000, 437763136697395052544000000, 1621968544942912438272000000
Offset: 0
1, 2, 9/4, 41/18, 1313/576, 5471/2400, 1181737/518400, 28952557/12700800, 1235309099/541900800, ...
-
Table[Sum[1/(k!)^2, {k, 0, n}], {n, 0, 17}] // Denominator
nmax = 17; CoefficientList[Series[BesselI[0, 2 Sqrt[x]]/(1 - x), {x, 0, nmax}], x] // Denominator
Comments