cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 58 results. Next

A215404 a(n) = 4*a(n-1) - 3*a(n-2) - a(n-3), with a(0)=0, a(1)=0 and a(2)=1.

Original entry on oeis.org

0, 0, 1, 4, 13, 39, 113, 322, 910, 2561, 7192, 20175, 56563, 158535, 444276, 1244936, 3488381, 9774440, 27387681, 76739023, 215018609, 602469686, 1688083894, 4729907909, 13252910268, 37133833451, 104046695091, 291532369743, 816855560248, 2288778436672, 6413014696201
Offset: 0

Views

Author

Roman Witula, Aug 09 2012

Keywords

Comments

We have a(n)=C(n;-1), A121449(n)=A(n;-1), A085810(n+1)=-B(n+1;-1), where A(n;d), B(n;d), and C(n;d), n in N, d in C, are so-called quasi-Fibonacci numbers defined and discussed in the comments to A121449 and in Witula-Slota-Warzynski's paper. It follows from formulas (3.47-49) in this paper that the value of A(n;1/3), B(n;1/3) and C(n;1/3) could be obtained from special convolution type identities for sequences a(n), A121449, and A085810.

Crossrefs

Programs

  • Magma
    I:=[0,0,1]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-2)-Self(n-3): n in [1..35]]; // Vincenzo Librandi, Sep 18 2015
  • Mathematica
    LinearRecurrence[{4,-3,-1}, {0,0,1}, 50]
    CoefficientList[Series[x^2/(1 - 4 x + 3 x^2 + x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 18 2015 *)
  • PARI
    Vec(x^2/(1-4*x+3*x^2+x^3)+O(x^99)) \\ Charles R Greathouse IV, Oct 01 2012
    

Formula

G.f.: x^2/(1-4*x+3*x^2+x^3).
a(n) = (1/7)*((c(2)-c(4))*(1-c(1))^n + (c(4)-c(1))*(1-c(2))^n + (c(1)-c(2))*(1-c(4))^n), where c(j):=2*cos(2*Pi*j/7) - this formula is the Binet formula for a(n) (see the Binet formula (3.17) for the respective quasi-Fibonacci number C(n;d) for value d=-1 in the Witula-Slota-Warzynski paper).

A106803 Expansion of x*(1-x)/(1-2*x-x^2+x^3).

Original entry on oeis.org

0, 1, 1, 3, 6, 14, 31, 70, 157, 353, 793, 1782, 4004, 8997, 20216, 45425, 102069, 229347, 515338, 1157954, 2601899, 5846414, 13136773, 29518061, 66326481, 149034250, 334876920, 752461609, 1690765888, 3799116465, 8536537209
Offset: 0

Views

Author

Roger L. Bagula, May 17 2005

Keywords

Comments

Essentially a duplicate of A077998: a(n) = A077998(n-1). - Joerg Arndt, Aug 14 2015
a(n) appears in the formula for the nonnegative powers of sigma, the ratio of the smaller diagonal in the heptagon to the side length s=2*sin(Pi/7), when expressed in the basis <1,rho,sigma>, with rho = 2*cos(Pi/7), the ratio of the smaller heptagon diagonal to the side length, as follows. sigma^n = a(n-1)*1 + B(n)*rho + a(n)*sigma, n>=0, with B(n)=A006054(n). Put a(-1):= 1. See the Steinbach reference, and a comment under A052547.
a(n-1) is the top left entry of the n-th power of the 3X3 matrix [0, 1, 0; 1, 1, 1; 0, 1, 1] or of the 3X3 matrix [0, 0, 1; 0, 1, 1; 1, 1, 1]. - R. J. Mathar, Feb 03 2014

Crossrefs

Programs

  • Mathematica
    m = {{0, 0, 1}, {1, 2, 0}, {1, 1, 0}}; v[0] = {0, 1, 1}; v[n_] := m.v[n - 1]; Table[v[n][[1]], {n, 0, 30}] (* Edited and corrected by L. Edson Jeffery, Oct 18 2017 *)
    RecurrenceTable[{a[1]== 0, a[2]== 1, a[3]== 1, a[n]== 2*a[n-1]  + a[n-2] - a[n-3]}, a, {n,30}] (* G. C. Greubel, Aug 14 2015 *)
  • PARI
    concat(0,Vec((1-x)/(x^3-2*x-x^2+1)+O(x^99))) \\ Charles R Greathouse IV, Sep 25 2012

Formula

a(n) = A077998(n-1). - R. J. Mathar, Aug 07 2008
a(n) = A187070(2*n), a(n) = A187068(2*n+2). - L. Edson Jeffery, Mar 10 2011
a(n+1) = - A199853(n+1). - G. C. Greubel, Aug 14 2015
a(n) = 2*a(n-1) + a(n-2) - a(n-3), a(0)=0, a(1)=a(2)=1. - G. C. Greubel, Aug 14 2015
a(n) = A006356(n-2) for n > 1. - Georg Fischer, Oct 21 2018

Extensions

Edited by N. J. A. Sloane, Aug 08 2008

A124807 Number of base-6 circular n-digit numbers with adjacent digits differing by 2 or less.

Original entry on oeis.org

1, 6, 24, 84, 332, 1336, 5478, 22658, 94196, 392664, 1639274, 6849002, 28627874, 119688094, 500456806, 2092720174, 8751273556, 36596513060, 153042707976, 640011807436, 2676483843602, 11192882945426, 46807955443900
Offset: 0

Views

Author

R. H. Hardin, Dec 28 2006

Keywords

Comments

[Empirical] a(base,n) = a(base-1,n) + A005191(n+1) for base >= 2*floor(n/2) + 1.

Crossrefs

Programs

  • Magma
    I:=[1,6,24,84,332,1336,5478]; [n le 7 select I[n] else 6*Self(n-1) -6*Self(n-2) -8*Self(n-3) +5*Self(n-4) +2*Self(n-5) -Self(n-6): n in [1..41]]; // G. C. Greubel, Aug 04 2023
    
  • Mathematica
    LinearRecurrence[{6,-6,-8,5,2,-1}, {1,6,24,84,332,1336,5478}, 35] (* G. C. Greubel, Aug 04 2023 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A124807
        if (n<7): return (1,6,24,84,332,1336,5478)[n]
        else: return 6*a(n-1) -6*a(n-2) -8*a(n-3) +5*a(n-4) +2*a(n-5) -a(n-6)
    [a(n) for n in range(41)] # G. C. Greubel, Aug 04 2023

Formula

From Colin Barker, Jun 04 2017: (Start)
G.f.: (1 - 6*x^2 - 16*x^3 + 15*x^4 + 8*x^5 - 5*x^6) / ((1 - 4*x - x^2 + x^3)*(1 - 2*x - x^2 + x^3)).
a(n) = 6*a(n-1) - 6*a(n-2) - 8*a(n-3) + 5*a(n-4) + 2*a(n-5) - a(n-6) for n > 6.
(End)
a(n) = -5*[n=0] + 3*A006054(n+2) - 4*A006054(n+1) - A006054(n) + 3*A364705(n) - 8*A364705(n-1) - A364705(n-2). - G. C. Greubel, Aug 04 2023

A215569 a(n) = 3*a(n-1) + 46*a(n-2) + a(n-3) with a(0)=0, a(1)=14, a(2)=49.

Original entry on oeis.org

0, 14, 49, 791, 4641, 50358, 365351, 3417162, 27107990, 238878773, 1967021021, 16916594611, 141471629572, 1204545261843, 10138247340452, 85965295695706, 725459810009753, 6140921279372187, 51879880394260905, 438847479843913070, 3709157858947113027
Offset: 0

Views

Author

Roman Witula, Aug 16 2012

Keywords

Comments

The Ramanujan-type sequence number 7 for the argument 2Pi/7 (see also A214683, A215112, A006053, A006054, A215076, A215100, A120757, A215560 for the numbers: 1, 1a, 2, 2a, 3-6 respectively). The sequence a(n) is one of the three special sequences (the remaining two are A215560 and A215572) connected with the following recurrence relation:
(c(1)^4/c(2))^(n/3) + (c(2)^4/c(4))^(n/3) + (c(4)^4/c(1))^(n/3) = at(n) + bt(n)*7^(1/3) + ct(n)*49^(1/3), where c(j):=2*cos(2*Pi*j/7), and the sequences at(n), bt(n), and ct(n) satisfy the following system of recurrence equations: at(n)=7*bt(n-2)+at(n-3),
bt(n)=7*ct(n-2)+bt(n-3), ct(n)=at(n-2)+ct(n-3), with at(0)=3, at(1)=at(2)=bt(0)=bt(1)=bt(2)=ct(0)=ct(1)=0, ct(2)=2 - for details see the Witula's first paper (see also A215560). It follows that a(n)=bt(3*n+1), at(3*n+1)=ct(3*n+1)=0, which implies the first formula below.
We note that all numbers a(n) are divided by 7.

Examples

			We have  (c(1)^4/c(2))^(4/3) + (c(2)^4/c(4))^(4/3) + (c(4)^4/c(1))^(4/3) = (2/7)*(c(1)^4/c(2))^(7/3) + (c(2)^4/c(4))^(7/3) + (c(4)^4/c(1))^(7/3)).
		

References

  • R. Witula, E. Hetmaniok, D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the Fifteenth International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,46,1},{0,14,49},30] (* Harvey P. Dale, Jan 12 2015 *)

Formula

7^(1/3)*a(n) = (c(1)^4/c(2))^(n+1/3) + (c(2)^4/c(4))^(n+1/3) + (c(4)^4/c(1))^(n+1/3) = (c(1)*(c(1)/c(2))^(1/3))^(3*n+1) + (c(2)*(c(2)/c(4))^(1/3))^(3*n+1) + (c(4)*(c(4)/c(1))^(1/3))^(3*n+1).
G.f.: (14*x+7*x^2)/(1-3*x-46*x^2-x^3).

Extensions

More terms from Harvey P. Dale, Jan 12 2015

A077850 Expansion of (1-x)^(-1)/(1 - 2*x - x^2 + x^3).

Original entry on oeis.org

1, 3, 8, 19, 44, 100, 226, 509, 1145, 2574, 5785, 13000, 29212, 65640, 147493, 331415, 744684, 1673291, 3759852, 8448312, 18983186, 42654833, 95844541, 215360730, 483911169, 1087338528, 2443227496, 5489882352, 12335653673, 27717962203, 62281695728, 139945699987
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Comments

a(n) = A052534(n+1) - 1.

Crossrefs

Cf. A188106. See also A189247. - L. Edson Jeffery, Apr 22 2011

Programs

  • Mathematica
    CoefficientList[Series[(1-x)^(-1)/(1-2x-x^2+x^3),{x,0,40}],x] (* or *) LinearRecurrence[{3,-1,-2,1},{1,3,8,19},40] (* Harvey P. Dale, Jan 22 2013 *)
  • PARI
    Vec(1/(1-x)/(1-2*x-x^2+x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

Formula

a(n) = sum(k=0..n+2, A006054(k)). - Philippe Deléham, Sep 07 2006
a(n) = 3*a(n-1) - a(n-2) - 2*a(n-3) + a(n-4), n>3. Also a(n)=Sum_{k=0..n} A188106(n,k), n=0,1,2,..., giving partial sums of first convolution of A006054 with itself. - L. Edson Jeffery, Apr 22 2011

A120747 Sequence relating to the 11-gon (or hendecagon).

Original entry on oeis.org

0, 1, 4, 14, 50, 175, 616, 2163, 7601, 26703, 93819, 329615, 1158052, 4068623, 14294449, 50221212, 176444054, 619907431, 2177943781, 7651850657, 26883530748, 94450905714, 331837870408, 1165858298498, 4096053203771, 14390815650209, 50559786403254
Offset: 1

Views

Author

Gary W. Adamson, Jul 01 2006

Keywords

Comments

The hendecagon is an 11-sided polygon. The preferred word in the OEIS is 11-gon.
The lengths of the diagonals of the regular 11-gon are r[k] = sin(k*Pi/11)/sin(Pi/11), 1 <= k <= 5, where r[1] = 1 is the length of the edge.
The value of limit(a(n)/a(n-1),n=infinity) equals the longest diagonal r[5].
The a(n) equal the matrix elements M^n[1,2], where M = Matrix([[1,1,1,1,1], [1,1,1,1,0], [1,1,1,0,0], [1,1,0,0,0], [1,0,0,0,0]]). The characteristic polynomial of M is (x^5 - 3x^4 - 3x^3 + 4x^2 + x - 1) with roots x1 = -r[4]/r[3], x2 = -r[2]/r[4], x3 = r[1]/r[2], x4 = r[3]/r[5] and x5 = r[5]/r[1].
Note that M^4*[1,0,0,0,0] = [55, 50, 41, 29, 15] which are all terms of the 5-wave sequence A038201. This is also the case for the terms of M^n*[1,0,0,0,0], n>=1.

Examples

			From _Johannes W. Meijer_, Aug 03 2011: (Start)
The lengths of the regular hendecagon edge and diagonals are:
  r[1] = 1.000000000, r[2] = 1.918985948, r[3] = 2.682507066,
  r[4] = 3.228707416, r[5] = 3.513337092.
The first few rows of the T(n,k) array are, n>=1, 1 <= k <=5:
    0,   0,   0,   0,   1, ...
    1,   1,   1,   1,   1, ...
    1,   2,   3,   4,   5, ...
    5,   9,  12,  14,  15, ...
   15,  29,  41,  50,  55, ...
   55, 105, 146, 175, 190, ...
  190, 365, 511, 616, 671, ... (End)
		

Crossrefs

From Johannes W. Meijer, Aug 03 2011: (Start)
Cf. A006358 (T(n+2,1) and T(n+1,5)), A069006 (T(n+1,2)), A038342 (T(n+1,3)), this sequence (T(n,4)) (m=5: hendecagon or 11-gon).
Cf. A000045 (m=2; pentagon or 5-gon); A006356, A006054 and A038196 (m=3: heptagon or 7-gon); A006357, A076264, A091024 and A038197 (m=4: enneagon or 9-gon); A006359, A069007, A069008, A069009, A070778 (m=6; tridecagon or 13-gon); A025030 (m=7: pentadecagon or 15-gon); A030112 (m=8: heptadecagon or 17-gon). (End)

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x^2*(1+x-x^2)/(1-3*x-3*x^2+4*x^3+x^4-x^5) )); // G. C. Greubel, Nov 13 2022
    
  • Maple
    nmax:=27: m:=5: for k from 1 to m-1 do T(1,k):=0 od: T(1,m):=1: for n from 2 to nmax do for k from 1 to m do T(n,k):= add(T(n-1,k1), k1=m-k+1..m) od: od: for n from 1 to nmax/3 do seq(T(n,k), k=1..m) od; for n from 1 to nmax do a(n):=T(n,4) od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Aug 03 2011
  • Mathematica
    LinearRecurrence[{3, 3, -4, -1, 1}, {0, 1, 4, 14, 50}, 41] (* G. C. Greubel, Nov 13 2022 *)
  • SageMath
    def A120747_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1+x-x^2)/(1-3*x-3*x^2+4*x^3+x^4-x^5) ).list()
    A120747_list(40) # G. C. Greubel, Nov 13 2022

Formula

a(n) = 3*a(n-1) + 3*a(n-2) - 4*a(n-3) - a(n-4) + a(n-5).
G.f.: x^2*(1+x-x^2)/(1-3*x-3*x^2+4*x^3+x^4-x^5). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 12 2009
From Johannes W. Meijer, Aug 03 2011: (Start)
a(n) = T(n,4) with T(n,k) = Sum_{k1 = 6-k..6} T(n-1, k1), T(1,1) = T(1,2) = T(1,3) = T(1,4) = 0 and T(1,5) = 1, n>=1 and 1 <= k <= 5. [Steinbach]
Sum_{k=1..5} T(n,k)*r[k] = r[5]^n, n>=1. [Steinbach]
r[k] = sin(k*Pi/11)/sin(Pi/11), 1 <= k <= 5. [Kappraff]
Sum_{k=1..5} T(n,k) = A006358(n-1).
Limit_{n -> 00} T(n,k)/T(n-1,k) = r[5], 1 <= k <= 5.
sequence(sequence( T(n,k), k=2..5), n>=1) = A038201(n-4).
G.f.: (x^2*(x - x1)*(x - x2))/((x - x3)*(x - x4)*(x - x5)*(x - x6)*(x - x7)) with x1 = phi, x2 = (1-phi), x3 = r[1] - r[3], x4 = r[3] - r[5], x5 = r[5] - r[4], x6 = r[4] - r[2], x7 = r[2], where phi = (1 + sqrt(5))/2 is the golden ratio A001622. (End)

Extensions

Edited and information added by Johannes W. Meijer, Aug 03 2011

A306334 a(n) is the number of different linear hydrocarbon molecules with n carbon atoms.

Original entry on oeis.org

1, 3, 4, 10, 18, 42, 84, 192, 409, 926, 2030, 4577, 10171, 22889, 51176, 115070, 257987, 579868, 1301664, 2925209, 6569992, 14763529, 33166848, 74527233, 167446566, 376253517, 845401158, 1899609267, 4268309531, 9590827171, 21550227328, 48422972296, 108805058758
Offset: 1

Views

Author

Vincent Champain, Feb 08 2019

Keywords

Comments

Linear hydrocarbons are molecules made of carbon (C) and hydrogen (H) atoms organized without cycles.
a(n) <= A002986(n) because molecules can be acyclic but not linear (i.e., including carbon atoms bonded with more than two other carbons).
From Petros Hadjicostas, Nov 16 2019: (Start)
We prove Vaclav Kotesovec's conjectures from the Formula section. Let M = [[0,0,1], [0,1,1], [1,1,1]], X(n) = M^(n-2), and Y(n) = M^(floor(n/2)-2) = X(floor(n/2)) (with negative powers indicating matrix inverses). Let also, t_1 = [1,1,1]^T, t_2 = [1,2,2]^T, and t_3 = [1,2,3]^T. In addition, define b(n) = (1/2)*(t_1^T X(n) t_1) and c(n) = (1/2)*(t_3^T Y(n) t_1) if n is even and = (1/2)*(t_2^T Y(n) t_1) if n is odd.
We have a(n) = b(n) + c(n) for n >= 1. Since the characteristic polynomial of Vaclav Kotesovec's recurrence is x^9 - 2*x^8 - 3*x^7 + 5*x^6 + x^5 + 2*x^3 - 3*x^2 - x + 1 = g(x)*g(x^2), where g(x) = x^3 - 2*x^2 - x + 1, to prove his first conjecture, it suffices to show that b(n) - 2*b(n-1) - b(n-2) + b(n-3) = 0 (whose characteristic polynomial is g(x)) and c(n) - 2*c(n-2) - c(n-4) + c(n-6) = 0 (whose characteristic polynomial is g(x^2)).
Note that 2*b(n) = A006356(n-1) for n >= 1. (See the comments by L. Edson Jeffery and R. J. Mathar in the documentation of that sequence.) Also, 2*c(2*n) = A006356(n) and 2*c(2*n-1) = A006054(n+1) for n >= 1.
Properties of the polynomial g(x) = x^3 - 2*x^2 - x + 1 and its roots were studied by Witula et al. (2006) (see Corollary 2.4). This means that a(n) can essentially be expressed in terms of exp(I*2*Pi/7), but we omit the discussion. See also the comments for sequence A006054.
The characteristic polynomial of matrix M is g(x). By the Cayley-Hamilton theorem, 0 = g(M) = M^3 - 2*M^2 - M + I_3, and thus, for n >= 5, X(n) - 2*X(n-1) - X(n-2) + X(n-3) = M^(n-2) - 2*M^(n-3) - M^(n-4) + M^(n-5) = 0. Pre-multiplying by (1/2)*t_1^T and post-multiplying by t_1, we get that b(n) - 2*b(n-1) - b(n-2) + b(n-3) = 0 for n >= 5.
Similarly, for n >= 10, Y(n) - 2*Y(n-2) - Y(n-4) + Y(n-6) = X(floor(n/2)) - 2*X(floor((n-2)/2)) - X(floor((n-4)/2)) + X(floor((n-6)/2)) = X(floor(n/2)) - 2*X(floor(n/2) - 1) - X(floor(n/2) - 2) + X(floor(n/2) - 3) = 0. Pre-multiplying by (1/2)*t_3^T (when n is even) or by (1/2)*t_2^T (when n is odd), and post-multiplying by t_1, we get c(n) - 2*c(n-2) - c(n-4) + c(n-6) = 0 for n >= 10.
Since the characteristic polynomial of Vaclav Kotesovec's recurrence is g(x)*g(x^2), which is a polynomial of degree 9, the denominator of the g.f. of the sequence (a(n): n >= 1) should be x^9*g(1/x)*g(1/x^2) = (1 - 2*x - x^2 + x^3)*(1 - 2*x^2 - x^4 + x^6), as Vaclav Kotesovec conjectured below. The numerator of Vaclav Kotesovec's g.f. can be easily derived using the initial conditions (from a(1) = 1 to a(9) = 409). (End)

Examples

			For n=1, there is one possibility: CH4.
For n=2, there are 3 solutions: CHCH, CH3CH3, CH2CH2.
For n=3, there are 4 solutions: CHCCH3, CH2CCH2, CH3CHCH2, CH3CH2CH3.
For n=6, there are 42 solutions: CH3CH2CHCHCCH, CH3CH2CHCHCH2CH3, CH2CHCCCHCH2, CH2CHCHCHCH2CH3, CH2CHCHCHCCH, CH2CCCCHCH3, CHCCCCHCH2, CH3CHCHCHCHCH3, CHCCHCHCCH, CH2CCCCCH2, CH3CCCH2CH2CH3, CH3CCCCCH3, CH3CH2CH2CH2CH2CH3, CH2CHCHCHCHCH2, CH2CCHCH2CHCH2, CH3CHCCCHCH3, CHCCH2CH2CH2CH3, CHCCH2CH2CCH, CH3CCCH2CHCH2, CH2CCCHCH2CH3, CH2CCCHCCH, CHCCH2CCCH3, CHCCH2CHCCH2, CH3CH2CH2CH2CHCH2, CH2CHCHCCHCH3, CH3CH2CCCH2CH3, CH2CHCH2CH2CHCH2, CH2CHCHCCCH2, CH3CHCCHCH2CH3, CH3CH2CH2CHCHCH3, CH3CHCCHCCH, CHCCH2CH2CHCH2, CH3CHCHCCCH3, CH2CCHCCCH3, CH3CHCHCHCCH2, CHCCCCH2CH3, CH2CHCH2CHCHCH3, CH2CCHCHCCH2, CHCCCCCH, CH2CCHCH2CH2CH3, CH3CH2CCCHCH2, CHCCH2CHCHCH3.
		

Crossrefs

Other hydrocarbon related sequences: A002986, A018190, A129012.

Programs

  • Maple
    with(LinearAlgebra):
    M := Matrix([[0, 0, 1], [0, 1, 1], [1, 1, 1]]):
    X := proc(n) MatrixPower(M, n - 2): end proc:
    Y := proc(n) MatrixPower(M, floor(1/2*n) - 2): end proc:
    a := proc(n) `if`(n < 4, [1,3,4][n], 1/2*(add(add(X(n)[i, j], i = 1..3), j = 1..3) + add(add(Y(n)[i, j]*min(j, 3 - (n mod 2)), i = 1..3), j = 1..3))):
         end proc:
    seq(a(n), n=1..40); # Petros Hadjicostas, Nov 17 2019
  • Mathematica
    M = {{0, 0, 1}, {0, 1, 1}, {1, 1, 1}};
    X[n_] := MatrixPower[M, n - 2];
    Y[n_] := MatrixPower[M, Floor[1/2*n] - 2];
    a[n_] := If[n < 4, {1, 3, 4}[[n]], 1/2*(Sum[Sum[X[n][[i, j]], {i, 1, 3}], {j, 1, 3}] + Sum[Sum[Y[n][[i, j]]*Min[j, 3 - Mod[n, 2]], {i, 1, 3}], {j, 1, 3}])];
    Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Aug 16 2023, after Petros Hadjicostas *)
  • Python
    from numpy import array as npa
    from numpy.linalg import matrix_power as npow
    def F(n):
         if n<4: return([0,1,3,4][n])
         m=npa([[0,0,1],[0,1,1],[1,1,1]],dtype=object)
         m2=npow(m,n//2-2)
         return((sum(sum(npow(m,n-2)))+sum(sum(m2[j]*min(j+1,3-(n&1)) for j in range(3))))//2)

Formula

a(n) = (1/2) * (Sum_{i,j = 1..3} X_{ij} + Sum_{i,j = 1..3} Y_{ij} * min(j, 3 - (n&1))), where M = [[0,0,1], [0,1,1], [1,1,1]], X = [X_{ij}: i,j = 1..3] = M^(n-2), and Y = [Y_{ij}: i,j = 1..3] = M^(floor(n/2)-2)) for n >= 1 (with negative powers indicating matrix inverses). [Edited by Petros Hadjicostas, Nov 16 2019]
Conjectures from Vaclav Kotesovec, Feb 12 2019: (Start)
a(n) = 2*a(n-1) + 3*a(n-2) - 5*a(n-3) - a(n-4) - 2*a(n-6) + 3*a(n-7) + a(n-8) - a(n-9), for n >= 10.
G.f.: (1 - x - 2*x^2 - x^4 + 2*x^5 + x^6 - x^7) / ((1 - 2*x - x^2 + x^3)*(1 - 2*x^2 - x^4 + x^6)) - 1. (End) [These conjectures are true. See my comments above. - Petros Hadjicostas, Nov 17 2019]
From Petros Hadjicostas, Nov 17 2019: (Start)
a(2*n) = (1/2)*(A006356(2*n-1) + A006356(n)).
a(2*n-1) = (1/2)*(A006356(2*n-2) + A006054(n+1)). (End)

A188106 Triangle T(n,k) with the coefficient [x^k] of 1/(1-2*x-x^2+x^3)^(n-k+1) in row n, column k.

Original entry on oeis.org

1, 1, 2, 1, 4, 5, 1, 6, 14, 11, 1, 8, 27, 42, 25, 1, 10, 44, 101, 119, 56, 1, 12, 65, 196, 342, 322, 126, 1, 14, 90, 335, 770, 1080, 847, 283, 1, 16, 119, 526, 1495, 2772, 3248, 2180, 636, 1, 18, 152, 777, 2625, 6032, 9366, 9414, 5521, 1429, 1, 20, 189, 1096, 4284, 11718, 22590, 30148, 26517, 13804, 3211
Offset: 0

Views

Author

L. Edson Jeffery, Mar 20 2011

Keywords

Comments

Modified versions of the generating function for D(0)={1,2,5,11,...}=A006054(m+2), m=0,1,2,..., are related to rhombus substitution tilings (see A187068, A187069 and A187070). The columns of the triangle have generating functions 1/(1-x), 2*x/(1-x)^2, x^2*(5-x)/(1-x)^3, x^3*(11-2*x-x^2)/(1-x)^4, x^4*(25-6*x-3*x^2)/(1-x)^5, ..., for which the sum of the signed coefficients in the n-th numerator equals 2^n. The diagonals {1,2,5,...}, {1,4,14,...}, ..., are generated by successive series expansion of F(n+1,x), n=0,1,..., where F(n,x)=1/(1-2*x-x^2+x^3)^n. For example, the second diagonal is {T{1,0},T{2,1},...}={1,4,14,...}=A189426, for which successive partial sums give A189427 (excluding the zero terms). Moreover, the diagonals correspond to successive convolutions of A006054 (= the first diagonal) with itself.

Examples

			1;
1, 2;
1, 4, 5;
1, 6, 14, 11;
1, 8, 27, 42, 25;
1, 10, 44, 101, 119, 56;
1, 12, 65, 196, 342, 322, 126;
1, 14, 90, 335, 770, 1080, 847, 283;
1, 16, 119, 526, 1495 ...
		

Crossrefs

Programs

  • Maple
    A188106 := proc(n,k) 1/(1-2*x-x^2+x^3)^(n-k+1) ; coeftayl(%,x=0,k) ; end proc:
    seq(seq(A188106(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Mar 22 2011

Formula

Sum_{k=0..n} T(n,k) = A033505(n).
T(n,0) = 1.
T(n,2) = A014106(n-1).
T(n,3) = (n-2)*(4*n^2+2*n-9)/3.
T(n,4) = (n-2)*(n-3)*(2*n+7)*(2*n-3)/6.

Extensions

a(43) and following corrected by Georg Fischer, Oct 14 2023

A189427 Expansion of (x^2)/((1-x)*(1-2*x-x^2+x^3)^2).

Original entry on oeis.org

0, 0, 1, 5, 19, 61, 180, 502, 1349, 3529, 9050, 22854, 57014, 140832, 345036, 839530, 2030757, 4887423, 11710757, 27951471, 66486128, 157661282, 372840407, 879510801, 2070045268, 4862121660, 11398688956, 26676792832, 62333380456, 145434747140
Offset: 0

Views

Author

L. Edson Jeffery, Apr 22 2011

Keywords

Comments

Second of a series of sequences of partial sums of (nonzero) diagonals of triangle A188106 whose diagonals correspond to successive convolutions of A006054 with itself, where the first such sequence of partial sums is given by A077850. For n=1,2,..., this series of sequences is generated by successive series expansion of 1/((1-x)*(1-2*x-x^2+x^3)^n), for which A077850 corresponds to n=1 and A189427 corresponds to n=2.
a(n)=Sum_{k=0..n} A189426(k), where A189426={0,0,1,4,14,42,119,322,...} is the convolution of A006054={0,0,1,2,5,11,25,56,126,...} with itself. Also, a(n+2)=Sum_{k=0..n} A188106{n+k+1,k}, n=0,1,2,....

Crossrefs

Programs

Formula

G.f.: (x^2)/((1-x)*(1-2*x-x^2+x^3)^2).
a(n)=5*a(n-1)-6*a(n-2)-4*a(n-3)+9*a(n-4)-a(n-5)-3*a(n-6)+a(n-7), n>=7, a{m}={0,0,1,5,19,61,180}, m=0..6.

A215492 a(n) = 21*a(n-2) + 7*a(n-3), with a(0)=0, a(1)=3, and a(2)=6.

Original entry on oeis.org

0, 3, 6, 63, 147, 1365, 3528, 29694, 83643, 648270, 1964361, 14199171, 45789471, 311933118, 1060973088, 6871121775, 24463966674, 151720368891, 561841152579, 3357375513429, 12860706786396, 74437773850062, 293576471108319, 1653218198356074, 6686170310225133
Offset: 0

Views

Author

Roman Witula, Aug 13 2012

Keywords

Comments

We have a(n)=B(n;3), where B(n;d), n=1,2,..., d \in C, denote one of the quasi-Fibonacci numbers defined in the comments to A121449 and in the Witula-Slota-Warzynski paper. Its conjugate sequences A(n;3) and C(n;3) are discussed in A121458 and A215484 respectively. Similarly as in A121458 we deduce that each of the following elements a(3*n), a(3*n+1), a(3*n+2) is divided by 3*7^n for every n=0,1,... .

Crossrefs

Programs

  • Magma
    I:=[0,3,6]; [n le 3 select I[n] else 21*Self(n-2)+7*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Sep 18 2015
  • Mathematica
    LinearRecurrence[{0,21,7}, {0,3,6}, 50]
    CoefficientList[Series[(3 x + 6 x^2)/(1 - 21 x^2 - 7 x^3), {x, 0, 33}], x] (* Vincenzo Librandi, Sep 18 2015 *)
  • PARI
    concat(0,Vec((3+6*x)/(1-21*x^2-7*x^3)+O(x^99))) \\ Charles R Greathouse IV, Oct 01 2012
    

Formula

a(n) = (1/7)*((c(1)-c(4))*(1+3*c(1))^n + (c(2)-c(1))*(1+3*c(2))^n + (c(4)-c(2))*(1+3*c(4))^n), where c(j):=2*cos(2*Pi*j/7) (for the proof see Witula-Slota-Warzynski paper).
G.f.: (3*x+6*x^2)/(1-21*x^2-7*x^3).
Previous Showing 31-40 of 58 results. Next