cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 160 results. Next

A046165 Number of minimal covers of n objects.

Original entry on oeis.org

1, 1, 2, 8, 49, 462, 6424, 129425, 3731508, 152424420, 8780782707, 710389021036, 80610570275140, 12815915627480695, 2855758994821922882, 892194474524889501292, 391202163933291014701953, 240943718535427829240708786, 208683398342300491409959279244
Offset: 0

Views

Author

Keywords

Comments

No edge of a minimal cover can be a subset of any other, so minimal covers are antichains, but the converse is not true. - Gus Wiseman, Jul 03 2019
a(n) is the number of undirected graphs on n nodes for which the intersection number and independence number are equal. See Proposition 2.3.7 and Theorem 2.3.3 of the Deligeorgaki et al. paper below. - Alex Markham, Oct 13 2022

Examples

			From _Gus Wiseman_, Jul 02 2019: (Start)
The a(1) = 1 through a(3) = 8 minimal covers:
  {{1}}  {{1,2}}    {{1,2,3}}
         {{1},{2}}  {{1},{2,3}}
                    {{2},{1,3}}
                    {{3},{1,2}}
                    {{1,2},{1,3}}
                    {{1,2},{2,3}}
                    {{1},{2},{3}}
                    {{1,3},{2,3}}
(End)
		

Crossrefs

Antichain covers are A006126.
Minimal covering simple graphs are A053530.
Maximal antichains are A326358.
Row sums of A035347 or of A282575.

Programs

  • Maple
    a:= n-> add(add((-1)^i* binomial(k,i) *(2^k-1-i)^n, i=0..k)/k!, k=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 19 2008
  • Mathematica
    Table[Sum[Sum[Binomial[n,i]StirlingS2[i,k](2^k-k-1)^(n-i),{i,k,n}],{k,2,n}]+1,{n,1,20}] (* Geoffrey Critzer, Jun 27 2013 *)

Formula

E.g.f.: Sum_{n>=0} (exp(x)-1)^n*exp(x*(2^n-n-1))/n!. - Vladeta Jovovic, May 08 2004
a(n) = Sum_{k=1..n} Sum_{i=k..n} C(n,i)*Stirling2(i,k)*(2^k - k - 1)^(n - i). - Geoffrey Critzer, Jun 27 2013
a(n) ~ c * 2^(n^2/4 + n + 1/2) / sqrt(Pi*n), where c = JacobiTheta3(0,1/2) = EllipticTheta[3, 0, 1/2] = 2.1289368272118771586694585485449... if n is even, and c = JacobiTheta2(0,1/2) = EllipticTheta[2, 0, 1/2] = 2.1289312505130275585916134025753... if n is odd. - Vaclav Kotesovec, Mar 10 2014

Extensions

a(0)=1 prepended by Alois P. Heinz, Feb 18 2017

A367769 Number of finite sets of nonempty non-singleton subsets of {1..n} contradicting a strict version of the axiom of choice.

Original entry on oeis.org

0, 0, 0, 1, 1490, 67027582, 144115188036455750, 1329227995784915872903806998967001298, 226156424291633194186662080095093570025917938800079226639565284090686126876
Offset: 0

Views

Author

Gus Wiseman, Dec 05 2023

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.
Includes all set-systems with more edges than covered vertices, but this condition is not sufficient.

Examples

			The a(3) = 1 set-system is: {{1,2},{1,3},{2,3},{1,2,3}}.
		

Crossrefs

Set-systems without singletons are counted by A016031, covering A323816.
The complement is A367770, with singletons allowed A367902 (ranks A367906).
The version for simple graphs is A367867, covering A367868.
The version allowing singletons and empty edges is A367901.
The version allowing singletons is A367903, ranks A367907.
A000372 counts antichains, covering A006126, nonempty A014466.
A003465 counts covering set-systems, unlabeled A055621.
A058891 counts set-systems, unlabeled A000612.
A059201 counts covering T_0 set-systems.
A323818 counts covering connected set-systems.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Select[Subsets[Range[n]], Length[#]>1&]], Select[Tuples[#], UnsameQ@@#&]=={}&]], {n,0,3}]

Formula

a(n) = 2^(2^n-n-1) - A367770(n) = A016031(n+1) - A367770(n). - Christian Sievers, Jul 28 2024

Extensions

a(6)-a(8) from Christian Sievers, Jul 28 2024

A304998 Number of unlabeled antichains of finite sets spanning n vertices without singletons.

Original entry on oeis.org

1, 0, 1, 3, 15, 160, 15963, 489980652
Offset: 0

Views

Author

Gus Wiseman, May 23 2018

Keywords

Examples

			Non-isomorphic representatives of the a(4) = 15 antichains:
  {{1,2,3,4}}
  {{1,2},{3,4}}
  {{1,4},{2,3,4}}
  {{1,3,4},{2,3,4}}
  {{1,2},{1,3,4},{2,3,4}}
  {{1,3},{1,4},{2,3,4}}
  {{1,3},{2,4},{3,4}}
  {{1,4},{2,4},{3,4}}
  {{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{1,4},{2,3,4}}
  {{1,2},{1,3},{2,4},{3,4}}
  {{1,4},{2,3},{2,4},{3,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
  {{1,3},{1,4},{2,3},{2,4},{3,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
		

Crossrefs

Formula

a(n > 0) = A261005(n) - A261005(n - 1).

A326358 Number of maximal antichains of subsets of {1..n}.

Original entry on oeis.org

1, 2, 3, 7, 29, 376, 31746, 123805914
Offset: 0

Views

Author

Gus Wiseman, Jul 01 2019

Keywords

Comments

A set system (set of sets) is an antichain if no element is a subset of any other.

Examples

			The a(0) = 1 through a(3) = 7 maximal antichains:
  {}  {}   {}      {}
      {1}  {12}    {123}
           {1}{2}  {1}{23}
                   {2}{13}
                   {3}{12}
                   {1}{2}{3}
                   {12}{13}{23}
		

Crossrefs

Antichains of sets are A000372.
Minimal covering antichains are A046165.
Maximal intersecting antichains are A007363.
Maximal antichains of nonempty sets are A326359.

Programs

  • GAP
    LoadPackage("grape");
          maxachP:=function(n) local g,G;
           g:=Graph(Group(()), Combinations([1..n]), function(x, g) return x; end,
              function(x, y) return not IsSubset(x, y) and not IsSubset(y, x); end, true);
           G:=AutGroupGraph(g);
           return Sum(CompleteSubgraphs(NewGroupGraph(G, g), -1, 2),
                  function(c) return Length(Orbit(G, c, OnSets)); end);
         end;
           List([0..7],maxachP); # Mamuka Jibladze, Jan 26 2021
  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[stableSets[Subsets[Range[n]],SubsetQ]]],{n,0,5}]
    (* alternatively *)
    maxachP[n_]:=FindIndependentVertexSet[
      Flatten[Map[Function[s, Map[# \[DirectedEdge] s &, Most[Subsets[s]]]],
        Subsets[Range[n]]]], Infinity, All];
    Table[Length[maxachP[n]],{n,0,6}] (* Mamuka Jibladze, Jan 25 2021 *)

Formula

For n > 0, a(n) = A326359(n) + 1.

Extensions

a(6)-a(7) from Mamuka Jibladze, Jan 26 2021

A367770 Number of sets of nonempty non-singleton subsets of {1..n} satisfying a strict version of the axiom of choice.

Original entry on oeis.org

1, 1, 2, 15, 558, 81282, 39400122, 61313343278, 309674769204452
Offset: 0

Views

Author

Gus Wiseman, Dec 05 2023

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.
Excludes all set-systems with more edges than covered vertices, but this condition is not sufficient.

Examples

			The a(3) = 15 set-systems:
  {}
  {{1,2}}
  {{1,3}}
  {{2,3}}
  {{1,2,3}}
  {{1,2},{1,3}}
  {{1,2},{2,3}}
  {{1,2},{1,2,3}}
  {{1,3},{2,3}}
  {{1,3},{1,2,3}}
  {{2,3},{1,2,3}}
  {{1,2},{1,3},{2,3}}
  {{1,2},{1,3},{1,2,3}}
  {{1,2},{2,3},{1,2,3}}
  {{1,3},{2,3},{1,2,3}}
		

Crossrefs

Set-systems without singletons are counted by A016031, covering A323816.
The version for simple graphs is A133686, covering A367869.
The complement is counted by A367769.
The complement allowing singletons and empty sets is A367901.
Allowing singletons gives A367902, ranks A367906.
The complement allowing singletons is A367903, ranks A367907.
These set-systems have ranks A367906 /\ A326781.
A000372 counts antichains, covering A006126, nonempty A014466.
A003465 counts covering set-systems, unlabeled A055621.
A058891 counts set-systems, unlabeled A000612.
A323818 counts covering connected set-systems, unlabeled A323819.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Select[Subsets[Range[n]], Length[#]>1&]], Select[Tuples[#], UnsameQ@@#&]!={}&]],{n,0,3}]

Extensions

a(6)-a(8) from Christian Sievers, Jul 28 2024

A299471 Regular triangle where T(n,k) is the number of labeled k-uniform hypergraphs spanning n vertices.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 41, 11, 1, 1, 768, 958, 26, 1, 1, 27449, 1042642, 32596, 57, 1, 1, 1887284, 34352419335, 34359509614, 2096731, 120, 1, 1, 252522481, 72057319189324805, 1180591620442534312297, 72057594021152435, 268434467, 247, 1, 1, 66376424160
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2018

Keywords

Examples

			Triangle begins:
  1;
  1,     1;
  1,     4,       1;
  1,    41,      11,     1;
  1,   768,     958,    26,  1;
  1, 27449, 1042642, 32596, 57, 1;
  ...
		

Crossrefs

Columns 1..4 are A000012, A006129, A302374, A302396.
Row sums are A306021.
The unlabeled version is A301922.
The connected version is A299354.

Programs

  • Mathematica
    Table[Sum[(-1)^(n-d)*Binomial[n,d]*2^Binomial[d,k],{d,0,n}],{n,10},{k,n}]
  • PARI
    T(n, k) = sum(d = 0, n, (-1)^(n-d)*binomial(n,d)*2^binomial(d,k)) \\ Andrew Howroyd, Jan 16 2024

Formula

T(n, k) = Sum_{d = 0..n} (-1)^(n-d)*binomial(n,d)*2^binomial(d,k).

A303838 Number of z-forests with least common multiple n > 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 8, 1, 1, 2, 2, 2, 5, 1, 2, 2, 4, 1, 8, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 16, 1, 2, 3, 1, 2, 8, 1, 3, 2, 8, 1, 7, 1, 2, 3, 3, 2, 8, 1, 5, 1, 2, 1, 16, 2, 2
Offset: 1

Views

Author

Gus Wiseman, May 19 2018

Keywords

Comments

Given a finite set S of positive integers greater than 1, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices that have a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph. The clutter density of S is defined to be Sum_{s in S} (omega(s) - 1) - omega(LCM(S)), where omega = A001221 and LCM is least common multiple. A z-forest is a finite set of pairwise indivisible positive integers greater than 1 such that all connected components are z-trees, meaning they have clutter density -1.
This is a generalization to multiset systems of the usual definition of hyperforest (viz. hypergraph F such that two distinct hyperedges of F intersect in at most a common vertex and such that every cycle of F is contained in a hyperedge).
If n is squarefree with k prime factors, then a(n) = A134954(k).
Differs from A324837 at positions {1, 180, 210, ...}. For example, a(210) = 55, A324837(210) = 49.

Examples

			The a(60) = 16 z-forests together with the corresponding multiset systems (see A112798, A302242) are the following.
       (60): {{1,1,2,3}}
     (3,20): {{2},{1,1,3}}
     (4,15): {{1,1},{2,3}}
     (4,30): {{1,1},{1,2,3}}
     (5,12): {{3},{1,1,2}}
     (6,20): {{1,2},{1,1,3}}
    (10,12): {{1,3},{1,1,2}}
    (12,15): {{1,1,2},{2,3}}
    (12,20): {{1,1,2},{1,1,3}}
    (15,20): {{2,3},{1,1,3}}
    (3,4,5): {{2},{1,1},{3}}
   (3,4,10): {{2},{1,1},{1,3}}
    (4,5,6): {{1,1},{3},{1,2}}
   (4,6,10): {{1,1},{1,2},{1,3}}
   (4,6,15): {{1,1},{1,2},{2,3}}
  (4,10,15): {{1,1},{1,3},{2,3}}
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];
    Table[Length[Select[Rest[Subsets[Rest[Divisors[n]]]],Function[s,LCM@@s==n&&And@@Table[zensity[Select[s,Divisible[m,#]&]]==-1,{m,zsm[s]}]&&Select[Tuples[s,2],UnsameQ@@#&&Divisible@@#&]=={}]]],{n,100}]

A304911 Number of labeled hyperforests spanning n vertices without singleton edges.

Original entry on oeis.org

1, 0, 1, 4, 32, 351, 5057, 90756, 1956971, 49366904, 1427680932, 46590895869, 1694163054597, 67938488277050, 2978980898086377, 141801848209013050, 7282651452378019772, 401410357608479625207, 23635996827115264290005
Offset: 0

Views

Author

Gus Wiseman, May 20 2018

Keywords

Examples

			The a(3) = 4 hyperforests are {{1,2,3}}, {{1,3},{2,3}}, {{1,2},{2,3}}, {{1,2},{1,3}}.
		

Crossrefs

Formula

E.g.f.: exp(A030019(x) - x - 1) where A030019(x) is the e.g.f. of A030019.

A309326 BII-numbers of minimal covers.

Original entry on oeis.org

0, 1, 2, 3, 4, 8, 9, 10, 11, 12, 16, 18, 20, 32, 33, 36, 48, 64, 128, 129, 130, 131, 132, 136, 137, 138, 139, 140, 144, 146, 148, 160, 161, 164, 176, 192, 256, 258, 260, 264, 266, 268, 272, 274, 276, 288, 320, 512, 513, 516, 520, 521, 524, 528, 544, 545, 548
Offset: 1

Views

Author

Gus Wiseman, Jul 23 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18.
Elements of a set-system are sometimes called edges. A minimal cover is a set-system where every edge contains at least one vertex that does not belong to any other edge.

Examples

			The sequence of all minimal covers together with their BII-numbers begins:
    0: {}
    1: {{1}}
    2: {{2}}
    3: {{1},{2}}
    4: {{1,2}}
    8: {{3}}
    9: {{1},{3}}
   10: {{2},{3}}
   11: {{1},{2},{3}}
   12: {{1,2},{3}}
   16: {{1,3}}
   18: {{2},{1,3}}
   20: {{1,2},{1,3}}
   32: {{2,3}}
   33: {{1},{2,3}}
   36: {{1,2},{2,3}}
   48: {{1,3},{2,3}}
   64: {{1,2,3}}
  128: {{4}}
  129: {{1},{4}}
		

Crossrefs

Other BII-numbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326749 (connected), A326750 (clutters), A326751 (blobs), A326752 (hypertrees), A326754 (covers).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[0,1000],And@@Table[Union@@Delete[bpe/@bpe[#],i]!=Union@@bpe/@bpe[#],{i,Length[bpe/@bpe[#]]}]&]

A305857 Number of unlabeled intersecting antichains on up to n vertices.

Original entry on oeis.org

1, 2, 3, 6, 15, 87, 3528, 47174113
Offset: 0

Views

Author

Gus Wiseman, Jun 11 2018

Keywords

Comments

An intersecting antichain S is a finite set of finite nonempty sets (edges), any two of which have a nonempty intersection, and none of which is a subset of any other.

Examples

			Non-isomorphic representatives of the a(4) = 15 intersecting antichains:
  {}
  {{1}}
  {{1,2}}
  {{1,2,3}}
  {{1,2,3,4}}
  {{1,3},{2,3}}
  {{1,4},{2,3,4}}
  {{1,3,4},{2,3,4}}
  {{1,2},{1,3},{2,3}}
  {{1,4},{2,4},{3,4}}
  {{1,3},{1,4},{2,3,4}}
  {{1,2},{1,3,4},{2,3,4}}
  {{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{1,4},{2,3,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
		

Crossrefs

Formula

a(n) = A305855(0) + A305855(1) + ... + A305855(n). - Brendan McKay, May 11 2020

Extensions

a(6) from Andrew Howroyd, Aug 13 2019
a(7) from Brendan McKay, May 11 2020
Previous Showing 31-40 of 160 results. Next