cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 237 results. Next

A339564 Number of ways to choose a distinct factor in a factorization of n (pointed factorizations).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 7, 1, 3, 3, 7, 1, 7, 1, 7, 3, 3, 1, 14, 2, 3, 4, 7, 1, 10, 1, 12, 3, 3, 3, 17, 1, 3, 3, 14, 1, 10, 1, 7, 7, 3, 1, 26, 2, 7, 3, 7, 1, 14, 3, 14, 3, 3, 1, 25, 1, 3, 7, 19, 3, 10, 1, 7, 3, 10, 1, 36, 1, 3, 7, 7, 3, 10, 1, 26, 7, 3
Offset: 1

Views

Author

Gus Wiseman, Apr 10 2021

Keywords

Examples

			The pointed factorizations of n for n = 2, 4, 6, 8, 12, 24, 30:
  ((2))  ((4))    ((6))    ((8))      ((12))     ((24))       ((30))
         ((2)*2)  ((2)*3)  ((2)*4)    ((2)*6)    ((3)*8)      ((5)*6)
                  (2*(3))  (2*(4))    (2*(6))    (3*(8))      (5*(6))
                           ((2)*2*2)  ((3)*4)    ((4)*6)      ((2)*15)
                                      (3*(4))    (4*(6))      (2*(15))
                                      ((2)*2*3)  ((2)*12)     ((3)*10)
                                      (2*2*(3))  (2*(12))     (3*(10))
                                                 ((2)*2*6)    ((2)*3*5)
                                                 (2*2*(6))    (2*(3)*5)
                                                 ((2)*3*4)    (2*3*(5))
                                                 (2*(3)*4)
                                                 (2*3*(4))
                                                 ((2)*2*2*3)
                                                 (2*2*2*(3))
		

Crossrefs

The additive version is A000070 (strict: A015723).
The unpointed version is A001055 (strict: A045778, ordered: A074206, listed: A162247).
Allowing point (1) gives A057567.
Choosing a position instead of value gives A066637.
The ordered additive version is A336875.
A000005 counts divisors.
A001787 count normal multisets with a selected position.
A001792 counts compositions with a selected position.
A006128 counts partitions with a selected position.
A066186 count strongly normal multisets with a selected position.
A254577 counts ordered factorizations with a selected position.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Sum[Length[Union[fac]],{fac,facs[n]}],{n,50}]

Formula

a(n) = A057567(n) - A001055(n).
a(n) = Sum_{d|n, d>1} A001055(n/d).

A341450 Number of strict integer partitions of n that are empty or have smallest part not dividing all the others.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 2, 1, 3, 3, 6, 3, 9, 9, 12, 12, 20, 18, 28, 27, 37, 42, 55, 51, 74, 80, 98, 105, 136, 137, 180, 189, 232, 255, 308, 320, 403, 434, 512, 551, 668, 706, 852, 915, 1067, 1170, 1370, 1453, 1722, 1860, 2145, 2332, 2701, 2899, 3355, 3626, 4144
Offset: 0

Views

Author

Gus Wiseman, Apr 15 2021

Keywords

Comments

Alternative name: Number of strict integer partitions of n with no part dividing all the others.

Examples

			The a(0) = 1 through a(15) = 12 strict partitions (empty columns indicated by dots, 0 represents the empty partition, A..D = 10..13):
  0  .  .  .  .  32   .  43   53   54    64    65    75    76    86     87
                         52        72    73    74    543   85    95     96
                                   432   532   83    732   94    A4     B4
                                               92          A3    B3     D2
                                               542         B2    653    654
                                               632         643   743    753
                                                           652   752    762
                                                           742   932    843
                                                           832   5432   852
                                                                        942
                                                                        A32
                                                                        6432
		

Crossrefs

The complement is counted by A097986 (non-strict: A083710, rank: A339563).
The complement with no 1's is A098965 (non-strict: A083711).
The non-strict version is A338470.
The Heinz numbers of these partitions are A339562 (non-strict: A342193).
The case with greatest part not divisible by all others is A343379.
The case with greatest part divisible by all others is A343380.
A000009 counts strict partitions (non-strict: A000041).
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A167865 counts strict chains of divisors > 1 summing to n.
Sequences with similar formulas: A024994, A047966, A047968, A168111.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],#=={}||UnsameQ@@#&&!And@@IntegerQ/@(#/Min@@#)&]],{n,0,30}]

Formula

a(n > 0) = A000009(n) - Sum_{d|n} A025147(d-1).

A066898 Total number of even parts in all partitions of n.

Original entry on oeis.org

0, 1, 1, 4, 5, 11, 15, 28, 38, 62, 85, 131, 177, 258, 346, 489, 648, 890, 1168, 1572, 2042, 2699, 3475, 4532, 5783, 7446, 9430, 12017, 15106, 19073, 23815, 29827, 37011, 46012, 56765, 70116, 86033, 105627, 128962, 157476, 191359, 232499, 281286, 340180, 409871
Offset: 1

Views

Author

Naohiro Nomoto, Jan 24 2002

Keywords

Comments

Also sum of all even-indexed parts minus the sum of all odd-indexed parts, except the largest parts, of all partitions of n (cf. A206563). - Omar E. Pol, Feb 14 2012
From Omar E. Pol, Apr 06 2023: (Start)
Convolution of A000041 and A183063.
Convolution of A002865 and A362059.
a(n) is also the total number of even divisors of all positive integers in a sequence with n blocks where the m-th block consists of A000041(n-m) copies of m, with 1 <= m <= n. The mentioned even divisors are also all even parts of all partitions of n. (End)

Examples

			a(5) = 5 because in all the partitions of 5, namely [5], [4,1], [3,2], [3,1,1], [2,2,1], [2,1,1,1], [1,1,1,1,1], we have a total of 0+1+1+0+2+1+0=5 even parts.
		

Crossrefs

Programs

  • Haskell
    a066898 = p 0 1 where
       p e _             0 = e
       p e k m | m < k     = 0
               | otherwise = p (e + 1 - mod k 2) k (m - k) + p e (k + 1) m
    -- Reinhard Zumkeller, Mar 09 2012
    
  • Haskell
    a066898 = length . filter even . concat . ps 1 where
       ps _ 0 = [[]]
       ps i j = [t:ts | t <- [i..j], ts <- ps t (j - t)]
    -- Reinhard Zumkeller, Jul 13 2013
  • Maple
    g:=sum(x^(2*j)/(1-x^(2*j)),j=1..60)/product((1-x^j),j=1..60): gser:=series(g,x=0,55): seq(coeff(gser,x,n),n=1..50); # Emeric Deutsch, Feb 17 2006
    A066898 := proc(n)
        add(numtheory[tau](k)*combinat[numbpart](n-2*k),k=1..n/2) ;
    end proc: # R. J. Mathar, Jun 18 2016
  • Mathematica
    f[n_, i_] := Count[Flatten[IntegerPartitions[n]], i]
    o[n_] := Sum[f[n, i], {i, 1, n, 2}]
    e[n_] := Sum[f[n, i], {i, 2, n, 2}]
    Table[o[n], {n, 1, 45}]  (* A066897 *)
    Table[e[n], {n, 1, 45}]  (* A066898 *)
    %% - %                   (* A209423 *)
    (* Clark Kimberling, Mar 08 2012 *)
    a[n_] := Sum[DivisorSigma[0, k] PartitionsP[n - 2k], {k, 1, n/2}]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Aug 31 2016, after Vladeta Jovovic *)

Formula

a(n) = Sum_{k=1..floor(n/2)} tau(k)*numbpart(n-2*k). - Vladeta Jovovic, Jan 26 2002
a(n) = Sum_{k=0..floor(n/2)} k*A116482(n,k). - Emeric Deutsch, Feb 17 2006
G.f.: (Sum_{j>=1} x^(2*j)/(1-x^(2*j)))/(Product_{j>=1} (1-x^j)). - Emeric Deutsch, Feb 17 2006
a(n) = A066897(n) - A209423(n) = A006128(n) - A066897(n). - Reinhard Zumkeller, Mar 09 2012
a(n) = (A006128(n) - A209423(n))/2. - Vaclav Kotesovec, May 25 2018
a(n) ~ exp(Pi*sqrt(2*n/3)) * (2*gamma + log(3*n/(2*Pi^2))) / (8*Pi*sqrt(2*n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 25 2018

Extensions

More terms from Vladeta Jovovic, Jan 26 2002

A338470 Number of integer partitions of n with no part dividing all the others.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 3, 2, 5, 5, 13, 7, 23, 21, 33, 35, 65, 55, 104, 97, 151, 166, 252, 235, 377, 399, 549, 591, 846, 858, 1237, 1311, 1749, 1934, 2556, 2705, 3659, 3991, 5090, 5608, 7244, 7841, 10086, 11075, 13794, 15420, 19195, 21003, 26240, 29089, 35483
Offset: 0

Views

Author

Gus Wiseman, Mar 23 2021

Keywords

Comments

Alternative name: Number of integer partitions of n that are empty or have smallest part not dividing all the others.

Examples

			The a(5) = 1 through a(12) = 7 partitions (empty column indicated by dot):
  (32)  .  (43)   (53)   (54)    (64)    (65)     (75)
           (52)   (332)  (72)    (73)    (74)     (543)
           (322)         (432)   (433)   (83)     (552)
                         (522)   (532)   (92)     (732)
                         (3222)  (3322)  (443)    (4332)
                                         (533)    (5322)
                                         (542)    (33222)
                                         (632)
                                         (722)
                                         (3332)
                                         (4322)
                                         (5222)
                                         (32222)
		

Crossrefs

The complement is A083710 (strict: A097986).
The strict case is A341450.
The Heinz numbers of these partitions are A342193.
The dual version is A343341.
The case with maximum part not divisible by all the others is A343342.
The case with maximum part divisible by all the others is A343344.
A000005 counts divisors.
A000041 counts partitions.
A000070 counts partitions with a selected part.
A001787 count normal multisets with a selected position.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A167865 counts strict chains of divisors > 1 summing to n.
A276024 counts positive subset sums.
Sequences with similar formulas: A024994, A047966, A047968, A168111.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],#=={}||!And@@IntegerQ/@(#/Min@@#)&]],{n,0,30}]
    (* Second program: *)
    a[n_] := If[n == 0, 1, PartitionsP[n] - Sum[PartitionsP[d-1], {d, Divisors[n]}]];
    a /@ Range[0, 50] (* Jean-François Alcover, May 09 2021, after Andrew Howroyd *)
  • PARI
    a(n)={numbpart(n) - if(n, sumdiv(n, d, numbpart(d-1)))} \\ Andrew Howroyd, Mar 25 2021

Formula

a(n) = A000041(n) - Sum_{d|n} A000041(d-1) for n > 0. - Andrew Howroyd, Mar 25 2021

A211978 Total number of parts in all partitions of n plus the sum of largest parts of all partitions of n.

Original entry on oeis.org

0, 2, 6, 12, 24, 40, 70, 108, 172, 256, 384, 550, 798, 1112, 1560, 2136, 2926, 3930, 5288, 6996, 9260, 12104, 15798, 20412, 26348, 33702, 43044, 54588, 69090, 86906, 109126, 136270, 169854, 210732, 260924, 321752, 396028, 485624, 594402, 725174, 883092, 1072208
Offset: 0

Views

Author

Omar E. Pol, Jan 03 2013

Keywords

Comments

Also twice A006128, because the total number of parts in all partitions of n equals the sum of largest parts of all partitions of n. For a proof without words see the illustration of initial terms. Note that the sum of the lengths of all horizontal segments equals the sum of largest parts of all partitions of n. On the other hand, the sum of the lengths of all vertical segments equals the total number of parts of all partition of n. Therefore the sum of lengths of all horizontal segments equals the sum of lengths of all vertical segments.
a(n) is also the sum of the semiperimeters of the Ferrers boards of the partitions of n. Example: a(2)=6; indeed, the Ferrers boards of the partitions [2] and [1,1] of 2 are 2x1 rectangles; the sum of their semiperimeters is 3 + 3 = 6. - Emeric Deutsch, Oct 07 2016
a(n) is also the sum of the semiperimeters of the regions of the set of partitions of n. See the first illustration in the Example section. For more information see A278355. - Omar E. Pol, Nov 23 2016

Examples

			Illustration of initial terms as a minimalist diagram of regions of the set of partitions of n, for n = 1..6:
.                                         _ _ _ _ _ _
.                                         _ _ _      |
.                                         _ _ _|_    |
.                                         _ _    |   |
.                             _ _ _ _ _   _ _|_ _|_  |
.                             _ _ _    |  _ _ _    | |
.                   _ _ _ _   _ _ _|_  |  _ _ _|_  | |
.                   _ _    |  _ _    | |  _ _    | | |
.           _ _ _   _ _|_  |  _ _|_  | |  _ _|_  | | |
.     _ _   _ _  |  _ _  | |  _ _  | | |  _ _  | | | |
. _   _  |  _  | |  _  | | |  _  | | | |  _  | | | | |
.  |   | |   | | |   | | | |   | | | | |   | | | | | |
.
. 2    6     12        24         40          70
.
Also using the elements from the diagram we can draw an infinite Dyck path in which the n-th odd-indexed segment has A141285(n) up-steps and the n-th even-indexed segment has A194446(n) down-steps. Note that the n-th largest peak between two valleys at height 0 is also the partition number A000041(n) as shown below:
.
11...........................................................
.                                                           /\
.                                                          /  \
.                                                         /    \
7..................................                      /      \
.                                 /\                    /        \
5....................            /  \                /\/          \
.                   /\          /    \          /\  /              \
3..........        /  \        /      \        /  \/                \
2.....    /\      /    \    /\/        \      /                      \
1..  /\  /  \  /\/      \  /            \  /\/                        \
0 /\/  \/    \/          \/              \/                            \
. 0,2,  6,   12,         24,             40,                          70...
.
		

Crossrefs

Programs

  • Maple
    Q := sum(x^j/(1-x^j), j = 1 .. i): R := product(1-x^j, j = 1 .. i): g := sum(x^i*(1+i+Q)/R, i = 1 .. 100): gser := series(g, x = 0, 50): seq(coeff(gser, x, n), n = 0 .. 41); # Emeric Deutsch, Oct 07 2016
  • Mathematica
    Array[2 Sum[DivisorSigma[0, m] PartitionsP[# - m], {m, #}] &, 42, 0] (* Michael De Vlieger, Mar 20 2020 *)

Formula

a(n) = 2*A006128(n).
a(n) = A225600(2*A000041(n)) = A225600(A139582(n)), n >= 1.
a(n) = (Sum_{m=1..p(n)} A194446(m)) + (Sum_{m=1..p(n)} A141285(m)) = 2*Sum_{m=1..p(n)} A194446(m) = 2*Sum_{m=1..p(n)} A141285(m), where p(n) = A000041(n), n >= 1.
The trivariate g.f. G(t,s,x) of the partitions of a nonnegative integer relative to weight (marked by x), number of parts (marked by t), and largest part (marked by s) is G(t,s,x) = Sum_{i>=1} t*s^i*x^i/product_{j=1..i} (1-tx^j). Setting s = t, we obtain the bivariate g.f. of the partitions relative to weight (marked by x) and semiperimeter of the Ferrers board (marked by t). The g.f. of a(n) is g(x) = Sum_{i>=1} ((x^i*(1 + i + Q(x))/R(x)), where Q(x) = sum_{j=1..i} (x^j/(1 - x^j)) and R(x) = product_{j=1..i}(1-x^j). g(x) has been obtained by setting t = 1 in dG(t,t,x))/dt. - Emeric Deutsch, Oct 07 2016

A213191 Total sum A(n,k) of k-th powers of parts in all partitions of n; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 3, 0, 1, 4, 6, 0, 1, 6, 9, 12, 0, 1, 10, 17, 20, 20, 0, 1, 18, 39, 44, 35, 35, 0, 1, 34, 101, 122, 87, 66, 54, 0, 1, 66, 279, 392, 287, 180, 105, 86, 0, 1, 130, 797, 1370, 1119, 660, 311, 176, 128, 0, 1, 258, 2319, 5024, 4775, 2904, 1281, 558, 270, 192
Offset: 0

Views

Author

Alois P. Heinz, Feb 28 2013

Keywords

Comments

In general, if k > 0 then column k is asymptotic to 2^((k-3)/2) * 3^(k/2) * k! * Zeta(k+1) / Pi^(k+1) * exp(Pi*sqrt(2*n/3)) * n^((k-1)/2). - Vaclav Kotesovec, May 27 2018

Examples

			Square array A(n,k) begins:
:   0,  0,   0,   0,    0,     0,     0, ...
:   1,  1,   1,   1,    1,     1,     1, ...
:   3,  4,   6,  10,   18,    34,    66, ...
:   6,  9,  17,  39,  101,   279,   797, ...
:  12, 20,  44, 122,  392,  1370,  5024, ...
:  20, 35,  87, 287, 1119,  4775, 21447, ...
:  35, 66, 180, 660, 2904, 14196, 73920, ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, p, k) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],
          add((l->`if`(m=0, l, l+[0, l[1]*p^k*m]))
              (b(n-p*m, p-1, k)), m=0..n/p)))
        end:
    A:= (n, k)-> b(n, n, k)[2]:
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[n_, p_, k_] := b[n, p, k] = If[n == 0, {1, 0}, If[p < 1, {0, 0}, Sum[Function[l, If[m == 0, l, l + {0, First[l]*p^k*m}]][b[n - p*m, p - 1, k]], { m, 0, n/p}]]] ; a[n_, k_] := b[n, n, k][[2]]; Table[Table[a[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 12 2013, translated from Maple *)
    (* T = A066633 *) T[n_, n_] = 1; T[n_, k_] /; k, ] = 0; A[n_, k_] := Sum[T[n, j]*j^k, {j, 1, n}]; Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 15 2016 *)

Formula

A(n,k) = Sum_{j=1..n} A066633(n,j) * j^k.

A225600 Toothpick sequence related to integer partitions (see Comments lines for definition).

Original entry on oeis.org

0, 1, 2, 4, 6, 9, 12, 14, 15, 19, 24, 27, 28, 33, 40, 42, 43, 47, 49, 52, 53, 59, 70, 73, 74, 79, 81, 85, 86, 93, 108, 110, 111, 115, 117, 120, 121, 127, 131, 136, 137, 141, 142, 150, 172, 175, 176, 181, 183, 187, 188, 195, 199, 202, 203, 209, 211, 216, 217, 226, 256
Offset: 0

Views

Author

Omar E. Pol, Jul 28 2013

Keywords

Comments

This infinite toothpick structure is a minimalist diagram of regions of the set of partitions of all positive integers. For the definition of "region" see A206437. The sequence shows the growth of the diagram as a cellular automaton in which the "input" is A141285 and the "output” is A194446.
To define the sequence we use the following rules:
We start in the first quadrant of the square grid with no toothpicks.
If n is odd we place A141285((n+1)/2) toothpicks of length 1 connected by their endpoints in horizontal direction starting from the grid point (0, (n+1)/2).
If n is even we place toothpicks of length 1 connected by their endpoints in vertical direction starting from the exposed toothpick endpoint downward up to touch the structure or up to touch the x-axis. In this case the number of toothpicks added in vertical direction is equal to A194446(n/2).
The sequence gives the number of toothpicks after n stages. A220517 (the first differences) gives the number of toothpicks added at the n-th stage.
Also the toothpick structure (HV/HHVV/HHHVVV/HHV/HHHHVVVVV...) can be transformed in a Dyck path (UDUUDDUUUDDDUUDUUUUDDDDD...) in which the n-th odd-indexed segment has A141285(n) up-steps and the n-th even-indexed segment has A194446(n) down-steps, so the sequence can be represented by the vertices (or the number of steps from the origin) of the Dyck path. Note that the height of the n-th largest peak between two valleys at height 0 is also the partition number A000041(n). See Example section. See also A211978, A220517, A225610.

Examples

			For n = 30 the structure has 108 toothpicks, so a(30) = 108.
.                               Diagram of regions
Partitions of 7                 and partitions of 7
.                                   _ _ _ _ _ _ _
7                               15  _ _ _ _      |
4 + 3                               _ _ _ _|_    |
5 + 2                               _ _ _    |   |
3 + 2 + 2                           _ _ _|_ _|_  |
6 + 1                           11  _ _ _      | |
3 + 3 + 1                           _ _ _|_    | |
4 + 2 + 1                           _ _    |   | |
2 + 2 + 2 + 1                       _ _|_ _|_  | |
5 + 1 + 1                        7  _ _ _    | | |
3 + 2 + 1 + 1                       _ _ _|_  | | |
4 + 1 + 1 + 1                    5  _ _    | | | |
2 + 2 + 1 + 1 + 1                   _ _|_  | | | |
3 + 1 + 1 + 1 + 1                3  _ _  | | | | |
2 + 1 + 1 + 1 + 1 + 1            2  _  | | | | | |
1 + 1 + 1 + 1 + 1 + 1 + 1        1   | | | | | | |
.
.                                   1 2 3 4 5 6 7
.
Illustration of initial terms:
.
.                              _ _ _    _ _ _
.                _ _   _ _     _ _      _ _  |
.      _    _    _     _  |    _  |     _  | |
.            |    |     | |     | |      | | |
.
.      1    2     4     6       9        12
.
.
.                          _ _ _ _     _ _ _ _
.      _ _       _ _       _ _         _ _    |
.      _ _ _     _ _|_     _ _|_       _ _|_  |
.      _ _  |    _ _  |    _ _  |      _ _  | |
.      _  | |    _  | |    _  | |      _  | | |
.       | | |     | | |     | | |       | | | |
.
.        14        15         19          24
.
.
.                          _ _ _ _ _    _ _ _ _ _
.    _ _ _      _ _ _      _ _ _        _ _ _    |
.    _ _ _ _    _ _ _|_    _ _ _|_      _ _ _|_  |
.    _ _    |   _ _    |   _ _    |     _ _    | |
.    _ _|_  |   _ _|_  |   _ _|_  |     _ _|_  | |
.    _ _  | |   _ _  | |   _ _  | |     _ _  | | |
.    _  | | |   _  | | |   _  | | |     _  | | | |
.     | | | |    | | | |    | | | |      | | | | |
.
.       27         28         33            40
.
Illustration of initial terms as vertices (or the number of steps from the origin) of a Dyck path:
.
7                                    33
.                                    /\
5                      19           /  \
.                      /\          /    \
3            9        /  \     27 /      \
2       4    /\   14 /    \    /\/        \
1    1  /\  /  \  /\/      \  / 28         \
.    /\/  \/    \/ 15       \/              \
.   0  2   6    12          24              40
.
		

Crossrefs

Formula

a(A139582(n)) = a(2*A000041(n)) = 2*A006128(n) = A211978(n), n >= 1.

A343341 Number of integer partitions of n with no part divisible by all the others.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 4, 6, 11, 16, 28, 36, 58, 79, 111, 149, 209, 270, 368, 472, 618, 793, 1030, 1292, 1653, 2073, 2608, 3241, 4051, 4982, 6176, 7566, 9285, 11320, 13805, 16709, 20275, 24454, 29477, 35380, 42472, 50741, 60648, 72199, 85887, 101906, 120816
Offset: 0

Views

Author

Gus Wiseman, Apr 15 2021

Keywords

Comments

Alternative name: Number of integer partitions of n that are either empty, or have greatest part not divisible by all the others.

Examples

			The a(5) = 1 through a(10) = 16 partitions:
  (32)  (321)  (43)    (53)     (54)      (64)
               (52)    (332)    (72)      (73)
               (322)   (431)    (432)     (433)
               (3211)  (521)    (522)     (532)
                       (3221)   (531)     (541)
                       (32111)  (3222)    (721)
                                (3321)    (3322)
                                (4311)    (4321)
                                (5211)    (5221)
                                (32211)   (5311)
                                (321111)  (32221)
                                          (33211)
                                          (43111)
                                          (52111)
                                          (322111)
                                          (3211111)
		

Crossrefs

The complement is counted by A130689.
The dual version is A338470.
The Heinz numbers of these partitions are A343337.
The strict case is A343377.
A000009 counts strict partitions.
A000041 counts partitions.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],#=={}||!And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}]

A206563 Triangle read by rows: T(n,k) = number of odd/even parts >= k in all partitions of n, if k is odd/even.

Original entry on oeis.org

1, 2, 1, 5, 1, 1, 8, 4, 1, 1, 15, 5, 3, 1, 1, 24, 11, 5, 3, 1, 1, 39, 15, 9, 4, 3, 1, 1, 58, 28, 13, 9, 4, 3, 1, 1, 90, 38, 23, 12, 8, 4, 3, 1, 1, 130, 62, 33, 21, 12, 8, 4, 3, 1, 1, 190, 85, 51, 29, 20, 11, 8, 4, 3, 1, 1, 268, 131, 73, 48, 28, 20, 11, 8, 4, 3, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Feb 15 2012

Keywords

Comments

Let m and n be two positive integers such that m <= n. It appears that any set formed by m connected sections, or m disconnected sections, or a mixture of both, has the same properties described in the section example. (Cf. A135010, A207031, A207032, A212010). - Omar E. Pol, May 01 2012

Examples

			Calculation for n = 6. Write the partitions of 6 and below the sums of their columns:
.
.   6
.   3 + 3
.   4 + 2
.   2 + 2 + 2
.   5 + 1
.   3 + 2 + 1
.   4 + 1 + 1
.   2 + 2 + 1 + 1
.   3 + 1 + 1 + 1
.   2 + 1 + 1 + 1 + 1
.   1 + 1 + 1 + 1 + 1 + 1
. ------------------------
.  35, 16,  8,  4,  2,  1  --> Row 6 of triangle A181187.
.   |  /|  /|  /|  /|  /|
.   | / | / | / | / | / |
.   |/  |/  |/  |/  |/  |
.  19,  8,  4,  2,  1,  1  --> Row 6 of triangle A066633.
.
More generally, it appears that the sum of column k is also the total number of parts >= k in all partitions of n. It appears that the first differences of the column sums together with 1 give the number of occurrences of k in all partitions of n.
On the other hand we can see that the partitions of 6 contain:
24  odd parts >= 1 (the odd parts).
11 even parts >= 2 (the even parts).
5   odd parts >= 3.
3  even parts >= 4.
2   odd parts >= 5.
1  even part  >= 6.
Then, using the values of the column sums, it appears that:
T(6,1) = 35 - 16 + 8 - 4 + 2 - 1 = 24
T(6,2) =      16 - 8 + 4 - 2 + 1 = 11
T(6,3) =           8 - 4 + 2 - 1 = 5
T(6,4) =               4 - 2 + 1 = 3
T(6,5) =                   2 - 1 = 1
T(6,6) =                       1 = 1
So the 6th row of our triangle gives 24, 11, 5, 3, 1, 1.
Finally, for all partitions of 6, we can write:
The number of  odd parts      is equal to T(6,1) = 24.
The number of even parts      is equal to T(6,2) = 11.
The number of  odd parts >= 3 is equal to T(6,3) = 5.
The number of even parts >= 4 is equal to T(6,4) = 3.
The number of  odd parts >= 5 is equal to T(6,5) = 1.
The number of even parts >= 6 is equal to T(6,6) = 1.
More generally, we can write the same properties for any positive integer.
Triangle begins:
1;
2,    1;
5,    1,  1;
8,    4,  1,  1;
15,   5,  3,  1,  1;
24,  11,  5,  3,  1,  1;
39,  15,  9,  4,  3,  1,  1;
58,  28, 13,  9,  4,  3,  1,  1;
90,  38, 23, 12,  8,  4,  3,  1,  1;
130, 62, 33, 21, 12,  8,  4,  3,  1,  1;
		

Crossrefs

Formula

It appears that T(n,k) = abs(Sum_{j=k..n} (-1)^j*A181187(n,j)).
It appears that A066633(n,k) = T(n,k) - T(n,k+2). - Omar E. Pol, Feb 26 2012

Extensions

More terms from Alois P. Heinz, Feb 18 2012

A342193 Numbers with no prime index dividing all the other prime indices.

Original entry on oeis.org

1, 15, 33, 35, 45, 51, 55, 69, 75, 77, 85, 91, 93, 95, 99, 105, 119, 123, 135, 141, 143, 145, 153, 155, 161, 165, 175, 177, 187, 195, 201, 203, 205, 207, 209, 215, 217, 219, 221, 225, 231, 245, 247, 249, 253, 255, 265, 275, 279, 285, 287, 291, 295, 297, 299
Offset: 1

Views

Author

Gus Wiseman, Apr 11 2021

Keywords

Comments

Alternative name: 1 and numbers with smallest prime index not dividing all the other prime indices.
First differs from A339562 in having 45.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also 1 and Heinz numbers of integer partitions with smallest part not dividing all the others (counted by A338470). The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}         105: {2,3,4}      201: {2,19}
     15: {2,3}      119: {4,7}        203: {4,10}
     33: {2,5}      123: {2,13}       205: {3,13}
     35: {3,4}      135: {2,2,2,3}    207: {2,2,9}
     45: {2,2,3}    141: {2,15}       209: {5,8}
     51: {2,7}      143: {5,6}        215: {3,14}
     55: {3,5}      145: {3,10}       217: {4,11}
     69: {2,9}      153: {2,2,7}      219: {2,21}
     75: {2,3,3}    155: {3,11}       221: {6,7}
     77: {4,5}      161: {4,9}        225: {2,2,3,3}
     85: {3,7}      165: {2,3,5}      231: {2,4,5}
     91: {4,6}      175: {3,3,4}      245: {3,4,4}
     93: {2,11}     177: {2,17}       247: {6,8}
     95: {3,8}      187: {5,7}        249: {2,23}
     99: {2,2,5}    195: {2,3,6}      253: {5,9}
		

Crossrefs

The complement is counted by A083710 (strict: A097986).
The complement with no 1's is A083711 (strict: A098965).
These partitions are counted by A338470 (strict: A341450).
The squarefree case is A339562, with squarefree complement A339563.
The case with maximum prime index not divisible by all others is A343338.
The case with maximum prime index divisible by all others is A343339.
A000005 counts divisors.
A000070 counts partitions with a selected part.
A001221 counts distinct prime factors.
A006128 counts partitions with a selected position (strict: A015723).
A056239 adds up prime indices, row sums of A112798.
A299702 lists Heinz numbers of knapsack partitions.
A339564 counts factorizations with a selected factor.

Programs

  • Mathematica
    Select[Range[100],#==1||With[{p=PrimePi/@First/@FactorInteger[#]},!And@@IntegerQ/@(p/Min@@p)]&]
Previous Showing 41-50 of 237 results. Next