A339564
Number of ways to choose a distinct factor in a factorization of n (pointed factorizations).
Original entry on oeis.org
0, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 7, 1, 3, 3, 7, 1, 7, 1, 7, 3, 3, 1, 14, 2, 3, 4, 7, 1, 10, 1, 12, 3, 3, 3, 17, 1, 3, 3, 14, 1, 10, 1, 7, 7, 3, 1, 26, 2, 7, 3, 7, 1, 14, 3, 14, 3, 3, 1, 25, 1, 3, 7, 19, 3, 10, 1, 7, 3, 10, 1, 36, 1, 3, 7, 7, 3, 10, 1, 26, 7, 3
Offset: 1
The pointed factorizations of n for n = 2, 4, 6, 8, 12, 24, 30:
((2)) ((4)) ((6)) ((8)) ((12)) ((24)) ((30))
((2)*2) ((2)*3) ((2)*4) ((2)*6) ((3)*8) ((5)*6)
(2*(3)) (2*(4)) (2*(6)) (3*(8)) (5*(6))
((2)*2*2) ((3)*4) ((4)*6) ((2)*15)
(3*(4)) (4*(6)) (2*(15))
((2)*2*3) ((2)*12) ((3)*10)
(2*2*(3)) (2*(12)) (3*(10))
((2)*2*6) ((2)*3*5)
(2*2*(6)) (2*(3)*5)
((2)*3*4) (2*3*(5))
(2*(3)*4)
(2*3*(4))
((2)*2*2*3)
(2*2*2*(3))
Choosing a position instead of value gives
A066637.
The ordered additive version is
A336875.
A001787 count normal multisets with a selected position.
A001792 counts compositions with a selected position.
A006128 counts partitions with a selected position.
A066186 count strongly normal multisets with a selected position.
A254577 counts ordered factorizations with a selected position.
-
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
Table[Sum[Length[Union[fac]],{fac,facs[n]}],{n,50}]
A341450
Number of strict integer partitions of n that are empty or have smallest part not dividing all the others.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 0, 2, 1, 3, 3, 6, 3, 9, 9, 12, 12, 20, 18, 28, 27, 37, 42, 55, 51, 74, 80, 98, 105, 136, 137, 180, 189, 232, 255, 308, 320, 403, 434, 512, 551, 668, 706, 852, 915, 1067, 1170, 1370, 1453, 1722, 1860, 2145, 2332, 2701, 2899, 3355, 3626, 4144
Offset: 0
The a(0) = 1 through a(15) = 12 strict partitions (empty columns indicated by dots, 0 represents the empty partition, A..D = 10..13):
0 . . . . 32 . 43 53 54 64 65 75 76 86 87
52 72 73 74 543 85 95 96
432 532 83 732 94 A4 B4
92 A3 B3 D2
542 B2 653 654
632 643 743 753
652 752 762
742 932 843
832 5432 852
942
A32
6432
The Heinz numbers of these partitions are
A339562 (non-strict:
A342193).
The case with greatest part not divisible by all others is
A343379.
The case with greatest part divisible by all others is
A343380.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A167865 counts strict chains of divisors > 1 summing to n.
-
Table[Length[Select[IntegerPartitions[n],#=={}||UnsameQ@@#&&!And@@IntegerQ/@(#/Min@@#)&]],{n,0,30}]
A066898
Total number of even parts in all partitions of n.
Original entry on oeis.org
0, 1, 1, 4, 5, 11, 15, 28, 38, 62, 85, 131, 177, 258, 346, 489, 648, 890, 1168, 1572, 2042, 2699, 3475, 4532, 5783, 7446, 9430, 12017, 15106, 19073, 23815, 29827, 37011, 46012, 56765, 70116, 86033, 105627, 128962, 157476, 191359, 232499, 281286, 340180, 409871
Offset: 1
a(5) = 5 because in all the partitions of 5, namely [5], [4,1], [3,2], [3,1,1], [2,2,1], [2,1,1,1], [1,1,1,1,1], we have a total of 0+1+1+0+2+1+0=5 even parts.
-
a066898 = p 0 1 where
p e _ 0 = e
p e k m | m < k = 0
| otherwise = p (e + 1 - mod k 2) k (m - k) + p e (k + 1) m
-- Reinhard Zumkeller, Mar 09 2012
-
a066898 = length . filter even . concat . ps 1 where
ps _ 0 = [[]]
ps i j = [t:ts | t <- [i..j], ts <- ps t (j - t)]
-- Reinhard Zumkeller, Jul 13 2013
-
g:=sum(x^(2*j)/(1-x^(2*j)),j=1..60)/product((1-x^j),j=1..60): gser:=series(g,x=0,55): seq(coeff(gser,x,n),n=1..50); # Emeric Deutsch, Feb 17 2006
A066898 := proc(n)
add(numtheory[tau](k)*combinat[numbpart](n-2*k),k=1..n/2) ;
end proc: # R. J. Mathar, Jun 18 2016
-
f[n_, i_] := Count[Flatten[IntegerPartitions[n]], i]
o[n_] := Sum[f[n, i], {i, 1, n, 2}]
e[n_] := Sum[f[n, i], {i, 2, n, 2}]
Table[o[n], {n, 1, 45}] (* A066897 *)
Table[e[n], {n, 1, 45}] (* A066898 *)
%% - % (* A209423 *)
(* Clark Kimberling, Mar 08 2012 *)
a[n_] := Sum[DivisorSigma[0, k] PartitionsP[n - 2k], {k, 1, n/2}]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Aug 31 2016, after Vladeta Jovovic *)
A338470
Number of integer partitions of n with no part dividing all the others.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 0, 3, 2, 5, 5, 13, 7, 23, 21, 33, 35, 65, 55, 104, 97, 151, 166, 252, 235, 377, 399, 549, 591, 846, 858, 1237, 1311, 1749, 1934, 2556, 2705, 3659, 3991, 5090, 5608, 7244, 7841, 10086, 11075, 13794, 15420, 19195, 21003, 26240, 29089, 35483
Offset: 0
The a(5) = 1 through a(12) = 7 partitions (empty column indicated by dot):
(32) . (43) (53) (54) (64) (65) (75)
(52) (332) (72) (73) (74) (543)
(322) (432) (433) (83) (552)
(522) (532) (92) (732)
(3222) (3322) (443) (4332)
(533) (5322)
(542) (33222)
(632)
(722)
(3332)
(4322)
(5222)
(32222)
The Heinz numbers of these partitions are
A342193.
The case with maximum part not divisible by all the others is
A343342.
The case with maximum part divisible by all the others is
A343344.
A000070 counts partitions with a selected part.
A001787 count normal multisets with a selected position.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A167865 counts strict chains of divisors > 1 summing to n.
A276024 counts positive subset sums.
-
Table[Length[Select[IntegerPartitions[n],#=={}||!And@@IntegerQ/@(#/Min@@#)&]],{n,0,30}]
(* Second program: *)
a[n_] := If[n == 0, 1, PartitionsP[n] - Sum[PartitionsP[d-1], {d, Divisors[n]}]];
a /@ Range[0, 50] (* Jean-François Alcover, May 09 2021, after Andrew Howroyd *)
-
a(n)={numbpart(n) - if(n, sumdiv(n, d, numbpart(d-1)))} \\ Andrew Howroyd, Mar 25 2021
A211978
Total number of parts in all partitions of n plus the sum of largest parts of all partitions of n.
Original entry on oeis.org
0, 2, 6, 12, 24, 40, 70, 108, 172, 256, 384, 550, 798, 1112, 1560, 2136, 2926, 3930, 5288, 6996, 9260, 12104, 15798, 20412, 26348, 33702, 43044, 54588, 69090, 86906, 109126, 136270, 169854, 210732, 260924, 321752, 396028, 485624, 594402, 725174, 883092, 1072208
Offset: 0
Illustration of initial terms as a minimalist diagram of regions of the set of partitions of n, for n = 1..6:
. _ _ _ _ _ _
. _ _ _ |
. _ _ _|_ |
. _ _ | |
. _ _ _ _ _ _ _|_ _|_ |
. _ _ _ | _ _ _ | |
. _ _ _ _ _ _ _|_ | _ _ _|_ | |
. _ _ | _ _ | | _ _ | | |
. _ _ _ _ _|_ | _ _|_ | | _ _|_ | | |
. _ _ _ _ | _ _ | | _ _ | | | _ _ | | | |
. _ _ | _ | | _ | | | _ | | | | _ | | | | |
. | | | | | | | | | | | | | | | | | | | | |
.
. 2 6 12 24 40 70
.
Also using the elements from the diagram we can draw an infinite Dyck path in which the n-th odd-indexed segment has A141285(n) up-steps and the n-th even-indexed segment has A194446(n) down-steps. Note that the n-th largest peak between two valleys at height 0 is also the partition number A000041(n) as shown below:
.
11...........................................................
. /\
. / \
. / \
7.................................. / \
. /\ / \
5.................... / \ /\/ \
. /\ / \ /\ / \
3.......... / \ / \ / \/ \
2..... /\ / \ /\/ \ / \
1.. /\ / \ /\/ \ / \ /\/ \
0 /\/ \/ \/ \/ \/ \
. 0,2, 6, 12, 24, 40, 70...
.
Cf.
A006128,
A135010,
A141285,
A186114,
A193870,
A187219,
A194446,
A194447,
A206437,
A211026,
A220517,
A225600,
A278355.
-
Q := sum(x^j/(1-x^j), j = 1 .. i): R := product(1-x^j, j = 1 .. i): g := sum(x^i*(1+i+Q)/R, i = 1 .. 100): gser := series(g, x = 0, 50): seq(coeff(gser, x, n), n = 0 .. 41); # Emeric Deutsch, Oct 07 2016
-
Array[2 Sum[DivisorSigma[0, m] PartitionsP[# - m], {m, #}] &, 42, 0] (* Michael De Vlieger, Mar 20 2020 *)
A213191
Total sum A(n,k) of k-th powers of parts in all partitions of n; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
0, 0, 1, 0, 1, 3, 0, 1, 4, 6, 0, 1, 6, 9, 12, 0, 1, 10, 17, 20, 20, 0, 1, 18, 39, 44, 35, 35, 0, 1, 34, 101, 122, 87, 66, 54, 0, 1, 66, 279, 392, 287, 180, 105, 86, 0, 1, 130, 797, 1370, 1119, 660, 311, 176, 128, 0, 1, 258, 2319, 5024, 4775, 2904, 1281, 558, 270, 192
Offset: 0
Square array A(n,k) begins:
: 0, 0, 0, 0, 0, 0, 0, ...
: 1, 1, 1, 1, 1, 1, 1, ...
: 3, 4, 6, 10, 18, 34, 66, ...
: 6, 9, 17, 39, 101, 279, 797, ...
: 12, 20, 44, 122, 392, 1370, 5024, ...
: 20, 35, 87, 287, 1119, 4775, 21447, ...
: 35, 66, 180, 660, 2904, 14196, 73920, ...
Columns k=0-10 give:
A006128,
A066186,
A066183,
A229325,
A229326,
A229327,
A229328,
A229329,
A229330,
A229331,
A229332.
Rows n=0-10 give:
A000004,
A000012,
A052548,
A229354,
A229355,
A229356,
A229357,
A229358,
A229359,
A229360,
A229361.
-
b:= proc(n, p, k) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],
add((l->`if`(m=0, l, l+[0, l[1]*p^k*m]))
(b(n-p*m, p-1, k)), m=0..n/p)))
end:
A:= (n, k)-> b(n, n, k)[2]:
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
b[n_, p_, k_] := b[n, p, k] = If[n == 0, {1, 0}, If[p < 1, {0, 0}, Sum[Function[l, If[m == 0, l, l + {0, First[l]*p^k*m}]][b[n - p*m, p - 1, k]], { m, 0, n/p}]]] ; a[n_, k_] := b[n, n, k][[2]]; Table[Table[a[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 12 2013, translated from Maple *)
(* T = A066633 *) T[n_, n_] = 1; T[n_, k_] /; k, ] = 0; A[n_, k_] := Sum[T[n, j]*j^k, {j, 1, n}]; Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 15 2016 *)
A225600
Toothpick sequence related to integer partitions (see Comments lines for definition).
Original entry on oeis.org
0, 1, 2, 4, 6, 9, 12, 14, 15, 19, 24, 27, 28, 33, 40, 42, 43, 47, 49, 52, 53, 59, 70, 73, 74, 79, 81, 85, 86, 93, 108, 110, 111, 115, 117, 120, 121, 127, 131, 136, 137, 141, 142, 150, 172, 175, 176, 181, 183, 187, 188, 195, 199, 202, 203, 209, 211, 216, 217, 226, 256
Offset: 0
For n = 30 the structure has 108 toothpicks, so a(30) = 108.
. Diagram of regions
Partitions of 7 and partitions of 7
. _ _ _ _ _ _ _
7 15 _ _ _ _ |
4 + 3 _ _ _ _|_ |
5 + 2 _ _ _ | |
3 + 2 + 2 _ _ _|_ _|_ |
6 + 1 11 _ _ _ | |
3 + 3 + 1 _ _ _|_ | |
4 + 2 + 1 _ _ | | |
2 + 2 + 2 + 1 _ _|_ _|_ | |
5 + 1 + 1 7 _ _ _ | | |
3 + 2 + 1 + 1 _ _ _|_ | | |
4 + 1 + 1 + 1 5 _ _ | | | |
2 + 2 + 1 + 1 + 1 _ _|_ | | | |
3 + 1 + 1 + 1 + 1 3 _ _ | | | | |
2 + 1 + 1 + 1 + 1 + 1 2 _ | | | | | |
1 + 1 + 1 + 1 + 1 + 1 + 1 1 | | | | | | |
.
. 1 2 3 4 5 6 7
.
Illustration of initial terms:
.
. _ _ _ _ _ _
. _ _ _ _ _ _ _ _ |
. _ _ _ _ | _ | _ | |
. | | | | | | | | |
.
. 1 2 4 6 9 12
.
.
. _ _ _ _ _ _ _ _
. _ _ _ _ _ _ _ _ |
. _ _ _ _ _|_ _ _|_ _ _|_ |
. _ _ | _ _ | _ _ | _ _ | |
. _ | | _ | | _ | | _ | | |
. | | | | | | | | | | | | |
.
. 14 15 19 24
.
.
. _ _ _ _ _ _ _ _ _ _
. _ _ _ _ _ _ _ _ _ _ _ _ |
. _ _ _ _ _ _ _|_ _ _ _|_ _ _ _|_ |
. _ _ | _ _ | _ _ | _ _ | |
. _ _|_ | _ _|_ | _ _|_ | _ _|_ | |
. _ _ | | _ _ | | _ _ | | _ _ | | |
. _ | | | _ | | | _ | | | _ | | | |
. | | | | | | | | | | | | | | | | |
.
. 27 28 33 40
.
Illustration of initial terms as vertices (or the number of steps from the origin) of a Dyck path:
.
7 33
. /\
5 19 / \
. /\ / \
3 9 / \ 27 / \
2 4 /\ 14 / \ /\/ \
1 1 /\ / \ /\/ \ / 28 \
. /\/ \/ \/ 15 \/ \
. 0 2 6 12 24 40
.
Cf.
A000041,
A006128,
A135010,
A138137,
A139250,
A139582,
A141285,
A186114,
A186412,
A187219,
A194446,
A194447,
A206437,
A207779,
A211978,
A220517,
A225610.
A343341
Number of integer partitions of n with no part divisible by all the others.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 1, 4, 6, 11, 16, 28, 36, 58, 79, 111, 149, 209, 270, 368, 472, 618, 793, 1030, 1292, 1653, 2073, 2608, 3241, 4051, 4982, 6176, 7566, 9285, 11320, 13805, 16709, 20275, 24454, 29477, 35380, 42472, 50741, 60648, 72199, 85887, 101906, 120816
Offset: 0
The a(5) = 1 through a(10) = 16 partitions:
(32) (321) (43) (53) (54) (64)
(52) (332) (72) (73)
(322) (431) (432) (433)
(3211) (521) (522) (532)
(3221) (531) (541)
(32111) (3222) (721)
(3321) (3322)
(4311) (4321)
(5211) (5221)
(32211) (5311)
(321111) (32221)
(33211)
(43111)
(52111)
(322111)
(3211111)
The complement is counted by
A130689.
The Heinz numbers of these partitions are
A343337.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
Cf.
A066186,
A083710,
A083711,
A097986,
A098965,
A341450,
A343342,
A343345,
A343346,
A343381,
A343382.
-
Table[Length[Select[IntegerPartitions[n],#=={}||!And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}]
A206563
Triangle read by rows: T(n,k) = number of odd/even parts >= k in all partitions of n, if k is odd/even.
Original entry on oeis.org
1, 2, 1, 5, 1, 1, 8, 4, 1, 1, 15, 5, 3, 1, 1, 24, 11, 5, 3, 1, 1, 39, 15, 9, 4, 3, 1, 1, 58, 28, 13, 9, 4, 3, 1, 1, 90, 38, 23, 12, 8, 4, 3, 1, 1, 130, 62, 33, 21, 12, 8, 4, 3, 1, 1, 190, 85, 51, 29, 20, 11, 8, 4, 3, 1, 1, 268, 131, 73, 48, 28, 20, 11, 8, 4, 3, 1, 1
Offset: 1
Calculation for n = 6. Write the partitions of 6 and below the sums of their columns:
.
. 6
. 3 + 3
. 4 + 2
. 2 + 2 + 2
. 5 + 1
. 3 + 2 + 1
. 4 + 1 + 1
. 2 + 2 + 1 + 1
. 3 + 1 + 1 + 1
. 2 + 1 + 1 + 1 + 1
. 1 + 1 + 1 + 1 + 1 + 1
. ------------------------
. 35, 16, 8, 4, 2, 1 --> Row 6 of triangle A181187.
. | /| /| /| /| /|
. | / | / | / | / | / |
. |/ |/ |/ |/ |/ |
. 19, 8, 4, 2, 1, 1 --> Row 6 of triangle A066633.
.
More generally, it appears that the sum of column k is also the total number of parts >= k in all partitions of n. It appears that the first differences of the column sums together with 1 give the number of occurrences of k in all partitions of n.
On the other hand we can see that the partitions of 6 contain:
24 odd parts >= 1 (the odd parts).
11 even parts >= 2 (the even parts).
5 odd parts >= 3.
3 even parts >= 4.
2 odd parts >= 5.
1 even part >= 6.
Then, using the values of the column sums, it appears that:
T(6,1) = 35 - 16 + 8 - 4 + 2 - 1 = 24
T(6,2) = 16 - 8 + 4 - 2 + 1 = 11
T(6,3) = 8 - 4 + 2 - 1 = 5
T(6,4) = 4 - 2 + 1 = 3
T(6,5) = 2 - 1 = 1
T(6,6) = 1 = 1
So the 6th row of our triangle gives 24, 11, 5, 3, 1, 1.
Finally, for all partitions of 6, we can write:
The number of odd parts is equal to T(6,1) = 24.
The number of even parts is equal to T(6,2) = 11.
The number of odd parts >= 3 is equal to T(6,3) = 5.
The number of even parts >= 4 is equal to T(6,4) = 3.
The number of odd parts >= 5 is equal to T(6,5) = 1.
The number of even parts >= 6 is equal to T(6,6) = 1.
More generally, we can write the same properties for any positive integer.
Triangle begins:
1;
2, 1;
5, 1, 1;
8, 4, 1, 1;
15, 5, 3, 1, 1;
24, 11, 5, 3, 1, 1;
39, 15, 9, 4, 3, 1, 1;
58, 28, 13, 9, 4, 3, 1, 1;
90, 38, 23, 12, 8, 4, 3, 1, 1;
130, 62, 33, 21, 12, 8, 4, 3, 1, 1;
A342193
Numbers with no prime index dividing all the other prime indices.
Original entry on oeis.org
1, 15, 33, 35, 45, 51, 55, 69, 75, 77, 85, 91, 93, 95, 99, 105, 119, 123, 135, 141, 143, 145, 153, 155, 161, 165, 175, 177, 187, 195, 201, 203, 205, 207, 209, 215, 217, 219, 221, 225, 231, 245, 247, 249, 253, 255, 265, 275, 279, 285, 287, 291, 295, 297, 299
Offset: 1
The sequence of terms together with their prime indices begins:
1: {} 105: {2,3,4} 201: {2,19}
15: {2,3} 119: {4,7} 203: {4,10}
33: {2,5} 123: {2,13} 205: {3,13}
35: {3,4} 135: {2,2,2,3} 207: {2,2,9}
45: {2,2,3} 141: {2,15} 209: {5,8}
51: {2,7} 143: {5,6} 215: {3,14}
55: {3,5} 145: {3,10} 217: {4,11}
69: {2,9} 153: {2,2,7} 219: {2,21}
75: {2,3,3} 155: {3,11} 221: {6,7}
77: {4,5} 161: {4,9} 225: {2,2,3,3}
85: {3,7} 165: {2,3,5} 231: {2,4,5}
91: {4,6} 175: {3,3,4} 245: {3,4,4}
93: {2,11} 177: {2,17} 247: {6,8}
95: {3,8} 187: {5,7} 249: {2,23}
99: {2,2,5} 195: {2,3,6} 253: {5,9}
The case with maximum prime index not divisible by all others is
A343338.
The case with maximum prime index divisible by all others is
A343339.
A000070 counts partitions with a selected part.
A001221 counts distinct prime factors.
A299702 lists Heinz numbers of knapsack partitions.
A339564 counts factorizations with a selected factor.
Comments