cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 65 results. Next

A356033 Decimal expansion of (-1 + sqrt(13))/6 = A223139/3.

Original entry on oeis.org

4, 3, 4, 2, 5, 8, 5, 4, 5, 9, 1, 0, 6, 6, 4, 8, 8, 2, 1, 8, 6, 5, 3, 6, 8, 7, 7, 9, 1, 1, 7, 4, 9, 3, 2, 4, 3, 7, 5, 2, 1, 6, 0, 9, 5, 6, 4, 0, 8, 7, 4, 3, 6, 8, 7, 8, 5, 0, 7, 5, 5, 0, 9, 3, 7, 1, 1, 9, 4, 4, 9, 1, 3, 8, 2, 1, 6, 8
Offset: 0

Views

Author

Wolfdieter Lang, Aug 29 2022

Keywords

Comments

This constant r, an algebraic integer of the quadratic number field Q(13), is the positive root of its monic minimal polynomial x^2 + x/3 - 1/3. The negative root is -(1 + sqrt(13))/6 = -A209927/3 = -(A188943 - 1).
r^n = A052533(-n) + A006130(-(n+1))*r, for n >= 0, with A052533(-n) = 3*sqrt(-3)^(-n-2)*Snx(-n-2,1/sqrt(-3)), and A006130(-(n+1)) = sqrt(-3)^(-(n+1))*Snx(-(n+1), 1/sqrt(-3)), with the S-Chebyshev polynomials (see A049310), with S(-n, x) = -S(n-2, x), for n>=2, and S(-1, x) = 0. - Wolfdieter Lang, Nov 27 2023

Examples

			0.4342585459106648821865368779117493243752160956408743687850755...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[x/.N[Last[Solve[3x^2+x-1==0,x]],78]]] (* Stefano Spezia, Aug 29 2022 *)

Formula

r = (-1 + sqrt(13))/6 = A223139/3 = 1/A209927.

A375435 Expansion of g.f. A(x) satisfying A(x) = (1 + 3*x*A(x)) * (1 + x*A(x)^2).

Original entry on oeis.org

1, 4, 23, 167, 1370, 12066, 111399, 1063896, 10423145, 104172842, 1057938416, 10886055709, 113252336950, 1189231665334, 12588038915535, 134172815937543, 1438842536532522, 15513036330871914, 168057711839246901, 1828443841807079994, 19970180509170366264, 218877585875869278396
Offset: 0

Views

Author

Paul D. Hanna, Sep 07 2024

Keywords

Comments

In general, if G(x) = (1 + p*x*G(x)) * (1 + q*x*G(x)^2) for fixed p and q, then
(C.1) G(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * p^(n-k) * q^k * G(x)^k ).
(C.2) G(x) = (1/x) * Series_Reversion( x/(1 + p*x) - q*x^2 ).
(C.3) x = (sqrt((p - q*y)^2 + 4*p*q*y^2) - (p + q*y))/(2*p*q*y^2), where y = G(x).

Examples

			G.f. A(x) = 1 + 4*x + 23*x^2 + 167*x^3 + 1370*x^4 + 12066*x^5 + 111399*x^6 + 1063896*x^7 + 10423145*x^8 + 104172842*x^9 + 1057938416*x^10 + ...
where A(x) = (1 + 3*x*A(x)) * (1 + x*A(x)^2).
RELATED SERIES.
Let B(x) = A(x/B(x)) and B(x*A(x)) = A(x), then
B(x) = 1 + 4*x + 7*x^2 + 19*x^3 + 40*x^4 + 97*x^5 + 217*x^6 + 508*x^7 + 1159*x^8 + ... + A006130(n+1)*x^n + ...
where B(x) = (1 + 3*x)/(1 - x - 3*x^2).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1+x); for(i=1, n, A=(1 + 3*x*A)*(1 + x*(A+x*O(x^n))^2)); polcoef(A, n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=polcoef( (1/x)*serreverse( x*(1 - x - 3*x^2)/(1+3*x +x*O(x^n))), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2 * 3^(m-j) * A^j)*x^m/m))); polcoef(A, n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

G.f. A(x) = Sum{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = (1 + 3*x*A(x)) * (1 + x*A(x)^2).
(2) A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * 3^(n-k) * A(x)^k ).
(3) A(x) = (1/x) * Series_Reversion( x*(1 - x - 3*x^2)/(1 + 3*x) ).
(4) A(x) = Sum_{n>=0} A006130(n+1) * x^n * A(x)^n, where g.f. of A006130 = 1/(1 - x - 3*x^2).
(5) x = (sqrt(13*A(x)^2 - 6*A(x) + 9) - (3 + A(x)))/(6*A(x)^2).
a(n) = Sum_{k=0..n} 3^(n-k) * binomial(n+k+1,k) * binomial(n+k+1,n-k) / (n+k+1). - Seiichi Manyama, Sep 08 2024

A060959 Table by antidiagonals of generalized Fibonacci numbers: T(n,k) = T(n,k-1) + n*T(n,k-2) with T(n,0)=0 and T(n,1)=1.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 3, 3, 1, 1, 0, 1, 5, 5, 4, 1, 1, 0, 1, 8, 11, 7, 5, 1, 1, 0, 1, 13, 21, 19, 9, 6, 1, 1, 0, 1, 21, 43, 40, 29, 11, 7, 1, 1, 0, 1, 34, 85, 97, 65, 41, 13, 8, 1, 1, 0, 1, 55, 171, 217, 181, 96, 55, 15, 9, 1, 1, 0, 1, 89, 341, 508, 441, 301, 133, 71, 17, 10, 1, 1, 0
Offset: 0

Views

Author

Henry Bottomley, May 10 2001

Keywords

Examples

			Square array begins as:
  0, 1, 1, 1,  1,  1,  1, ...
  0, 1, 1, 2,  3,  5,  8, ...
  0, 1, 1, 3,  5, 11, 21, ...
  0, 1, 1, 4,  7, 19, 40, ...
  0, 1, 1, 5,  9, 29, 65, ...
  0, 1, 1, 6, 11, 41, 96, ...
		

Crossrefs

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> (((1+Sqrt(1+4*k))/2)^(n-k) - ((1-Sqrt(1+4*k))/2)^(n-k))/Sqrt(1+4*k) ))); # G. C. Greubel, Jan 15 2020
  • Magma
    [Round( (((1+Sqrt(1+4*k))/2)^(n-k) - ((1-Sqrt(1+4*k))/2)^(n-k) )/Sqrt(1+4*k) ): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 15 2020
    
  • Maple
    seq(seq( round((((1+sqrt(1+4*k))/2)^(n-k) - ((1-sqrt(1+4*k))/2)^(n-k) )/sqrt(1+4*k)), k=0..n), n=0..12); # G. C. Greubel, Jan 15 2020
  • Mathematica
    T[n_, k_]:= If[n==k==0, 0, Round[(((1+Sqrt[1+4n])/2)^k - ((1-Sqrt[1+4n])/2)^k)/Sqrt[1+4n]]]; Table[T[k, n-k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 15 2020 *)
  • PARI
    T(n,k) = ( ((1+sqrt(1+4*n))/2)^k - ((1-sqrt(1+4*n))/2)^k )/sqrt(1+4*n);
    for(n=0,12, for(k=0,n, print1( round(T(k,n-k)), ", "))) \\ G. C. Greubel, Jan 15 2020
    
  • Sage
    [[ round( (((1+sqrt(1+4*k))/2)^(n-k) - ((1-sqrt(1+4*k))/2)^(n-k) )/sqrt(1+4*k) ) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jan 15 2020
    

Formula

T(n, k) = ( ((1+sqrt(1+4*n))/2)^k - ((1-sqrt(1+4*n))/2)^k )/sqrt(1+4*n).

A074356 Coefficient of q^2 in nu(n), where nu(0)=1, nu(1)=b and, for n>=2, nu(n)=b*nu(n-1)+lambda*(1+q+q^2+...+q^(n-2))*nu(n-2) with (b,lambda)=(1,3).

Original entry on oeis.org

0, 0, 0, 0, 12, 42, 180, 561, 1833, 5373, 15798, 44367, 123561, 336243, 906054, 2408094, 6344832, 16561824, 42922602, 110472933, 282678423, 719404803, 1822117962, 4594816221, 11540742615, 28880919975, 72033463644, 179107709004
Offset: 0

Views

Author

Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002

Keywords

Comments

Coefficient of q^0 is A006130.

Examples

			The first 6 nu polynomials are nu(0)=1, nu(1)=1, nu(2)=4, nu(3)=7+3q, nu(4)=19+15q+12q^2, nu(5)=40+45q+42q^2+30q^3+9q^4, so the coefficients of q^2 are 0,0,0,0,12,42.
		

Crossrefs

Coefficient of q^0, q^1 and q^3 are in A006130, A074355 and A074357. Related sequences with other values of b and lambda are in A074082-A074089, A074352-A074354, A074358-A074363.

Programs

  • Maple
    nu := proc(n,b,lambda) if n = 0 then 1 ; elif n = 1 then b ; else b*nu(n-1,b,lambda)+lambda*nu(n-2,b,lambda)*add(q^i,i=0..n-2) ; fi ; end: A074356 := proc(n) local b,lambda,thisnu ; b := 1 ; lambda := 3 ; thisnu := nu(n,b,lambda) ; RETURN( coeftayl(thisnu,q=0,2) ) ; end: for n from 0 to 40 do printf("%d, ",A074356(n) ) ; od ; # R. J. Mathar, Mar 20 2007
  • Mathematica
    nu[n_, b_, lambda_] := nu[n, b, lambda] = Which[n == 0, 1, n == 1, b, True, b*nu[n - 1, b, lambda] + lambda*nu[n - 2, b, lambda]*Sum[q^i, {i, 0, n - 2}]];
    a[n_] := a[n] = Coefficient[nu[n, 1, 3], q, 2];
    Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 30}] (* Jean-François Alcover, Nov 23 2017, from Maple *)

Formula

Conjectures from Colin Barker, Nov 18 2017: (Start)
G.f.: 3*x^4*(2 - 3*x)*(2 + 4*x + 3*x^2) / (1 - x - 3*x^2)^3.
a(n) = 3*a(n-1) + 6*a(n-2) - 17*a(n-3) - 18*a(n-4) + 27*a(n-5) + 27*a(n-6) for n>7.
(End)

Extensions

More terms from R. J. Mathar, Mar 20 2007

A105963 Expansion of (1+4*x)/(1-x-3*x^2).

Original entry on oeis.org

1, 5, 8, 23, 47, 116, 257, 605, 1376, 3191, 7319, 16892, 38849, 89525, 206072, 474647, 1092863, 2516804, 5795393, 13345805, 30731984, 70769399, 162965351, 375273548, 864169601, 1989990245, 4582499048, 10552469783, 24299966927
Offset: 0

Views

Author

Creighton Dement, Apr 28 2005

Keywords

Comments

Inversion of the periodic sequence with initial period (1,4,-1,-4). Sequence appears to have the property: for m > n, if s divides both a(n) and a(m) then s also divides a(2*m-n). E.g., 23 divides both a(3) = 23 and a(25) = 1989990245; 23 also divides a(2*25-3) = a(47) = 185518234185384428 = (2)^2*(23)*(131)*(15393149202239).
Floretion Algebra Multiplication Program, FAMP Code: 1jesforseq[.5'k + .5k' + 2'kk' + 2e]

Crossrefs

Programs

  • GAP
    a:=[1,5];; for n in [3..40] do a[n]:=a[n-1]+3*a[n-2]; od; a; # G. C. Greubel, Jan 15 2020
  • Magma
    I:=[ 1,5]; [n le 2 select I[n] else Self(n-1)+3*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Jul 20 2013
    
  • Maple
    seq(coeff(series((1+4*x)/(1-x-3*x^2), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Jan 15 2020
  • Mathematica
    CoefficientList[Series[(1+4x)/(1-x-3x^2), {x,0,40}], x] (* Vincenzo Librandi, Jul 20 2013 *)
    Table[Round[3^((n-1)/2)*(Sqrt[3]*Fibonacci[n+1, 1/Sqrt[3]] + 4*Fibonacci[n, 1/Sqrt[3]] )], {n,0,40}] (* G. C. Greubel, Jan 15 2020 *)
  • PARI
    Vec((1+4*x)/(1-x-3*x^2)+O(x^40)) \\ Charles R Greathouse IV, Sep 27 2012
    
  • SageMath
    def A077952_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+4*x)/(1-x-3*x^2) ).list()
    A077952_list(30) # G. C. Greubel, Jan 15 2020
    

Formula

a(n) = A006130(n) + 4*A006130(n-1) = A006130(n+1) + A006130(n-1). - R. J. Mathar, Dec 12 2009
From Colin Barker, May 01 2019: (Start)
a(n) = (2^(-1-n)*((1-sqrt(13))^n*(-9+sqrt(13)) + (1+sqrt(13))^n*(9+sqrt(13)))) / sqrt(13).
a(n) = a(n-1) + 3*a(n-2) for n > 1. (End)
a(n) = 3^((n-1)/2)*( sqrt(3)*Fibonacci(n+1, 1/sqrt(3)) + 4*Fibonacci(n, 1/sqrt(3)) ). - G. C. Greubel, Jan 15 2020

A210797 Triangle of coefficients of polynomials u(n,x) jointly generated with A210798; see the Formula section.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 4, 5, 3, 1, 6, 10, 10, 5, 1, 7, 16, 22, 18, 8, 1, 9, 24, 42, 47, 33, 13, 1, 10, 33, 69, 98, 95, 59, 21, 1, 12, 44, 108, 182, 220, 188, 105, 34, 1, 13, 56, 156, 308, 444, 472, 363, 185, 55, 1, 15, 70, 220, 490, 818, 1034, 985, 690, 324, 89, 1
Offset: 1

Views

Author

Clark Kimberling, Mar 26 2012

Keywords

Comments

Row n starts with 1 and ends with F(n), where F=A000045 (Fibonacci numbers).
Column 2: A032766
Column 3: A001859
Row sums: A099232
Alternating row sums: A008346
For a discussion and guide to related arrays, see A208510.

Examples

			First five rows:
1
1...1
1...3...2
1...4...5....3
1...6...10...10...5
First three polynomials u(n,x): 1, 1 + x, 1 + 3x + 2x^2.
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + (x + j)*v[n - 1, x] + c;
    d[x_] := h + x; e[x_] := p + x;
    v[n_, x_] := d[x]*u[n - 1, x] + e[x]*v[n - 1, x] + f;
    j = 0; c = 0; h = 2; p = -1; f = 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A210797 *)
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A210798 *)
    Table[u[n, x] /. x -> 1, {n, 1, z}]   (* A099232 *)
    Table[v[n, x] /. x -> 1, {n, 1, z}]   (* A006130 *)
    Table[u[n, x] /. x -> -1, {n, 1, z}]  (* A008346 *)
    Table[v[n, x] /. x -> -1, {n, 1, z}]  (* A039834 *)

Formula

u(n,x)=u(n-1,x)+x*v(n-1,x),
v(n,x)=(x+2)*u(n-1,x)+(x-1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.

A210798 Triangle of coefficients of polynomials v(n,x) jointly generated with A210797; see the Formula section.

Original entry on oeis.org

1, 2, 2, 1, 3, 3, 2, 5, 7, 5, 1, 6, 12, 13, 8, 2, 8, 20, 29, 25, 13, 1, 9, 27, 51, 62, 46, 21, 2, 11, 39, 84, 125, 129, 84, 34, 1, 12, 48, 126, 224, 284, 258, 151, 55, 2, 14, 64, 182, 374, 562, 622, 505, 269, 89, 1, 15, 75, 250, 580, 1008, 1328, 1315, 969, 475
Offset: 1

Views

Author

Clark Kimberling, Mar 26 2012

Keywords

Comments

Row n starts with A109613(n) and ends with F(n+1), where F=A000045 (Fibonacci numbers).
Column 2: A114113
For a discussion and guide to related arrays, see A208510.

Examples

			First five rows:
1
2...2
1...3...3
2...5...7....5
1...6...12...13...8
First three polynomials v(n,x): 1, 2 + 2x, 1 + 3x + 3x^2
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + (x + j)*v[n - 1, x] + c;
    d[x_] := h + x; e[x_] := p + x;
    v[n_, x_] := d[x]*u[n - 1, x] + e[x]*v[n - 1, x] + f;
    j = 0; c = 0; h = 2; p = -1; f = 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A210797 *)
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A210798 *)
    Table[u[n, x] /. x -> 1, {n, 1, z}]   (* A099232 *)
    Table[v[n, x] /. x -> 1, {n, 1, z}]   (* A006130 *)
    Table[u[n, x] /. x -> -1, {n, 1, z}]  (* A008346 *)
    Table[v[n, x] /. x -> -1, {n, 1, z}]  (* A039834 *)

Formula

u(n,x)=u(n-1,x)+x*v(n-1,x),
v(n,x)=(x+2)*u(n-1,x)+(x-1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.

A362297 Array read by antidiagonals for k,n>=0: T(n,k) = number of tilings of a 2k X n rectangle using dominos and 2 X 2 right triangles.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 19, 7, 1, 1, 1, 97, 55, 19, 1, 1, 1, 508, 445, 472, 40, 1, 1, 1, 2683, 3625, 13249, 2023, 97, 1, 1, 1, 14209, 29575, 392299, 109771, 13249, 217, 1, 1, 1, 75316, 241375, 11877025, 6078148, 2102272, 66325, 508, 1, 1, 1, 399331, 1970125, 362823607, 338504101, 358815535, 22650721, 392299, 1159, 1
Offset: 0

Views

Author

Gerhard Kirchner, Apr 19 2023

Keywords

Comments

Triangles only occur as pairs forming 2 X 2 squares. Combining four triangles, a square with side sqrt(2) can be made, but this side is irrational and the square cannot be used for tiling. A pair of triangles is equivalent to a 2 X 2 square with a 180 degree rotation symmetry (generated by an ornament for example).

Examples

			Table begins:
n\k_0__1_____2_______3_________4___________5______________6
0:  1  1     1       1         1           1              1
1:  1  1     1       1         1           1              1
2:  1  4    19      97       508        2683          14209
3:  1  7    55     445      3625       29575         241375
4:  1 19   472   13249    392299    11877025      362823607
5:  1 40  2023  109771   6078148   338504101    18883136617
6:  1 97 13249 2102272 358815535 63483562159 11428502939791
		

Crossrefs

Formula

T(n,1) = A006130(n).
T(n,2) = A362298(n).
T(3,k) = A362299(k).

A362299 Number of tilings of a 3 X 2n rectangle using dominos and 2 X 2 right triangles.

Original entry on oeis.org

1, 7, 55, 445, 3625, 29575, 241375, 1970125, 16080625, 131254375, 1071334375, 8744528125, 71375265625, 582584734375, 4755218359375, 38813412578125, 316805850390625, 2585857315234375, 21106485396484375, 172276994236328125, 1406172661416015625
Offset: 0

Views

Author

Gerhard Kirchner, Apr 19 2023

Keywords

Comments

Triangles only occur as pairs forming 2 X 2 squares. For program code and additional details, see A362297.

Examples

			a(1)=7:
   ___ _    _ ___    ___ _    _ ___    ___ _    _ ___    ___ _
  |  /| |  | |  /|  |\  | |  | |\  |  |___| |  | |___|  | | | |
  |/__|_|  |_|/__|  |__\|_|  |_|__\|  |___|_|  |_|___|  |_|_|_|
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{10, -15}, {1, 7}, 30] (* Paolo Xausa, Jul 20 2024 *)

Formula

a(n) = 10*a(n-1) - 15*a(n-2).
G.f.: (1 - 3*x)/(1 - 10*x + 15*x^2).
E.g.f.: exp(5*x)*(5*cosh(sqrt(10)*x) + sqrt(10)*sinh(sqrt(10)*x))/5. - Stefano Spezia, Apr 20 2023

A109447 Binomial coefficients C(n,k) with n-k odd, read by rows.

Original entry on oeis.org

1, 2, 1, 3, 4, 4, 1, 10, 5, 6, 20, 6, 1, 21, 35, 7, 8, 56, 56, 8, 1, 36, 126, 84, 9, 10, 120, 252, 120, 10, 1, 55, 330, 462, 165, 11, 12, 220, 792, 792, 220, 12, 1, 78, 715, 1716, 1287, 286, 13, 14, 364, 2002, 3432, 2002, 364, 14, 1, 105, 1365, 5005, 6435, 3003, 455, 15
Offset: 1

Views

Author

Philippe Deléham, Aug 27 2005

Keywords

Comments

The same as A119900 without 0's. A reflected version of A034867 or A202064. - Alois P. Heinz, Feb 07 2014
From Vladimir Shevelev, Feb 07 2014: (Start)
Also table of coefficients of polynomials P_1(x)=1, P_2(x)=2, for n>=2, P_(n+1)(x) = 2*P_n(x)+(x-1)* P_(n-1)(x). The polynomials P_n(x)/2^(n-1) are connected with sequences A000045 (x=5), A001045 (x=9), A006130 (x=13), A006131 (x=17), A015440 (x=21), A015441 (x=25), A015442 (x=29), A015443 (x=33), A015445 (x=37), A015446 (x=41), A015447 (x=45), A053404 (x=49); also the polynomials P_n(x) are connected with sequences A000129, A002605, A015518, A063727, A085449, A002532, A083099, A015519, A003683, A002534, A083102, A015520. (End)

Examples

			Starred terms in Pascal's triangle (A007318), read by rows:
1;
1*, 1;
1, 2*, 1;
1*, 3, 3*, 1;
1, 4*, 6, 4*, 1;
1*, 5, 10*, 10, 5*, 1;
1, 6*, 15, 20*, 15, 6*, 1;
1*, 7, 21*, 35, 35*, 21, 7*, 1;
1, 8*, 28, 56*, 70, 56*, 28, 8*, 1;
1*, 9, 36*, 84, 126*, 126, 84*, 36, 9*, 1;
Triangle T(n,k) begins:
1;
2;
1,    3;
4,    4;
1,   10,  5;
6,   20,  6;
1,   21,  35,   7;
8,   56,  56,   8;
1,   36, 126,  84,  9;
10, 120, 252, 120, 10;
		

Crossrefs

Cf. A109446.

Programs

  • Maple
    T:= (n, k)-> binomial(n, 2*k+1-irem(n, 2)):
    seq(seq(T(n, k), k=0..ceil((n-2)/2)), n=1..20);  # Alois P. Heinz, Feb 07 2014
  • Mathematica
    Flatten[ Table[ If[ OddQ[n - k], Binomial[n, k], {}], {n, 0, 15}, {k, 0, n}]] (* Robert G. Wilson v *)

Extensions

More terms from Robert G. Wilson v, Aug 30 2005
Corrected offset by Alois P. Heinz, Feb 07 2014
Previous Showing 41-50 of 65 results. Next