A322623
E.g.f.: (1 + sinh(x)) / (1 - sinh(x)).
Original entry on oeis.org
1, 2, 4, 14, 64, 362, 2464, 19574, 177664, 1814162, 20583424, 256891934, 3497611264, 51588733562, 819450793984, 13946142745094, 253171058212864, 4883182404118562, 99727612182790144, 2149854113300939054, 48784173816258494464, 1162353473295706049162, 29013549746780744187904, 757126891483681641073814, 20616734677807356197208064, 584789894473832421848925362
Offset: 0
E.g.f.: A(x) = 1 + 2*x + 4*x^2/2! + 14*x^3/3! + 64*x^4/4! + 362*x^5/5! + 2464*x^6/6! + 19574*x^7/7! + 177664*x^8/8! + 1814162*x^9/9! + ...
where
A(x) = 1 + 2*sinh(x) + 2*sinh(x)^2 + 2*sinh(x)^3 + 2*sinh(x)^4 + ...
-
S:= series((1+sinh(x))/(1-sinh(x)),x,51):
seq(coeff(S,x,j)*j!,j=0..50); # Robert Israel, Dec 31 2018
-
{a(n) = my(X = x +x*O(x^n)); n! * polcoeff( (1 + sinh(X)) / (1 - sinh(X)),n)}
for(n=0,30, print1(a(n),", "))
A330046
Expansion of e.g.f. exp(x) / (1 - sinh(x)).
Original entry on oeis.org
1, 2, 5, 17, 77, 437, 2975, 23627, 214457, 2189897, 24846395, 310095887, 4221990437, 62273111357, 989164604615, 16834483468547, 305604501324017, 5894522593612817, 120381876933435635, 2595103478745235607, 58887707028270711197, 1403084759749993342277
Offset: 0
-
nmax = 21; CoefficientList[Series[Exp[x]/(1 - Sinh[x]), {x, 0, nmax}], x] Range[0, nmax]!
A332258
E.g.f.: 1 / (1 + x - sinh(x)).
Original entry on oeis.org
1, 0, 0, 1, 0, 1, 20, 1, 112, 1681, 492, 27721, 371624, 319177, 13461604, 171387217, 319071456, 11466038689, 143550642140, 484491620089, 15758152572952, 199089883272217, 1077471975974484, 32827750137627457, 427744154995090256, 3385134777669637681
Offset: 0
-
nmax = 25; CoefficientList[Series[1/(1 + x - Sinh[x]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, 2 k - 1] a[n - 2 k + 1], {k, 2, Ceiling[n/2]}]; Table[a[n], {n, 0, 25}]
-
seq(n)={Vec(serlaplace(1 / (1 + x - sinh(x + O(x*x^n)))))} \\ Andrew Howroyd, Feb 08 2020
A349105
Expansion of e.g.f. 1/(1 - (sinh(x) + x*cosh(x))/2 ).
Original entry on oeis.org
1, 1, 2, 8, 40, 243, 1796, 15502, 152608, 1690613, 20814208, 281859540, 4163795648, 66636761575, 1148477490304, 21207704998010, 417728195909632, 8742243282090153, 193720478508563456, 4531158728871170080, 111562803180301643776, 2884156736234559267611
Offset: 0
-
With[{m = 21}, Range[0, m]! * CoefficientList[Series[1/(1 - (Sinh[x] + x*Cosh[x])/2), {x, 0, m}], x]] (* Amiram Eldar, Mar 26 2022 *)
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(1-(sinh(x)+x*cosh(x))/2)))
-
a(n) = if(n==0, 1, sum(k=0, (n-1)\2, (k+1)*binomial(n, 2*k+1)*a(n-2*k-1)));
A352251
Expansion of e.g.f. 1 / (1 - x * sinh(x)) (even powers only).
Original entry on oeis.org
1, 2, 28, 966, 62280, 6452650, 980531916, 205438870014, 56760128400016, 19994672935658322, 8746764024725937300, 4651991306703670964518, 2956156902003429777549144, 2212026607642404922284728826, 1925137044528752884360406444380, 1928103808741894922401976601295950
Offset: 0
-
nmax = 30; Take[CoefficientList[Series[1/(1 - x Sinh[x]), {x, 0, nmax}], x] Range[0, nmax]!, {1, -1, 2}]
a[0] = 1; a[n_] := a[n] = 2 Sum[Binomial[2 n, 2 k] k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 15}]
-
my(x='x+O('x^40), v=Vec(serlaplace(1 /(1-x*sinh(x))))); vector(#v\2, k, v[2*k-1]) \\ Michel Marcus, Mar 10 2022
A352326
Expansion of e.g.f.: 1/(2 - exp(x) - sinh(x)).
Original entry on oeis.org
1, 2, 9, 62, 567, 6482, 88929, 1423382, 26037027, 535813802, 12251630349, 308153112302, 8455276083087, 251333936555522, 8045613346221369, 275950004166050822, 10095559110771678747, 392427366313299119642, 16151459739717643489989
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-k)*binomial(n, k)*(1+(k mod 2)), k=1..n))
end:
seq(a(n), n=0..18); # Alois P. Heinz, Mar 25 2022
-
m = 18; Range[0, m]! * CoefficientList[Series[1/(2 - Exp[x] - Sinh[x]), {x, 0, m}], x] (* Amiram Eldar, Mar 12 2022 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(2-exp(x)-sinh(x))))
-
a(n) = if(n==0, 1, sum(k=1, n, (3-(-1)^k)/2*binomial(n, k)*a(n-k)));
A352327
Expansion of e.g.f.: 1/(3 - exp(x) - cosh(x)).
Original entry on oeis.org
1, 1, 4, 19, 130, 1081, 10894, 127639, 1711210, 25798141, 432212134, 7964801659, 160121522290, 3487254825601, 81790592435374, 2055350489070079, 55093108433421370, 1569052795651631461, 47315282424232826614, 1506074331671551028899
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-k)*binomial(n, k)*(2-(k mod 2)), k=1..n))
end:
seq(a(n), n=0..19); # Alois P. Heinz, Mar 25 2022
-
m = 19; Range[0, m]! * CoefficientList[Series[1/(3 - Exp[x] - Cosh[x]), {x, 0, m}], x] (* Amiram Eldar, Mar 12 2022 *)
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(3-exp(x)-cosh(x))))
-
a(n) = if(n==0, 1, sum(k=1, n, (3+(-1)^k)/2*binomial(n, k)*a(n-k)));
A352428
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/3)} binomial(n,3*k+1) * a(n-3*k-1).
Original entry on oeis.org
1, 1, 2, 6, 25, 130, 810, 5881, 48806, 455706, 4727881, 53955682, 671730246, 9059714665, 131588822822, 2047796305470, 33992509701721, 599526848094850, 11195864285933682, 220692569175568729, 4579248276057441926, 99767702172338210898, 2277136869014579978473, 54336724559407913237122
Offset: 0
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, 3 k + 1] a[n - 3 k - 1], {k, 0, Floor[(n - 1)/3]}]; Table[a[n], {n, 0, 23}]
nmax = 23; CoefficientList[Series[1/(1 - Sum[x^(3 k + 1)/(3 k + 1)!, {k, 0, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=0, N\3, x^(3*k+1)/(3*k+1)!)))) \\ Seiichi Manyama, Mar 23 2022
A352430
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/5)} binomial(n,5*k+1) * a(n-5*k-1).
Original entry on oeis.org
1, 1, 2, 6, 24, 120, 721, 5054, 40488, 364896, 3654000, 40249441, 483659508, 6296246424, 88269037584, 1325861901000, 21243052172161, 361630022931666, 6518319228715302, 124018898163736536, 2483799332459535000, 52231733840672804881, 1150683180739820615582, 26502219276887376327696
Offset: 0
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, 5 k + 1] a[n - 5 k - 1], {k, 0, Floor[(n - 1)/5]}]; Table[a[n], {n, 0, 23}]
nmax = 23; CoefficientList[Series[1/(1 - Sum[x^(5 k + 1)/(5 k + 1)!, {k, 0, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
-
my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=0, N\5, x^(5*k+1)/(5*k+1)!)))) \\ Seiichi Manyama, Mar 23 2022
A365915
Expansion of e.g.f. 1 / ( 1 - Sum_{k>=0} x^(2*k+5) / (2*k+5)! ).
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 252, 1, 1584, 1, 7436, 756757, 31616, 14702689, 129404, 189559657, 11733266992, 2062481617, 516242875084, 20611819933, 14135172627712, 623557476714481, 312148517693820, 52096977907924561, 6121122865591920
Offset: 0
Comments