cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 102 results. Next

A301543 Expansion of Product_{k>=1} 1/(1 - x^k)^(sigma_5(k)).

Original entry on oeis.org

1, 1, 34, 278, 1896, 13074, 92442, 607200, 3866890, 24062327, 146637082, 873517399, 5101981085, 29274370913, 165261721720, 918756928198, 5035250026792, 27229238821726, 145412875008092, 767414597651951, 4004930689994100, 20679955170511834, 105711772783426512
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 23 2018

Keywords

Crossrefs

Product_{k>=1} 1/(1 - x^k)^sigma_m(k): A006171 (m=0), A061256 (m=1), A275585 (m=2), A288391 (m=3), A301542 (m=4), this sequence (m=5), A301544 (m=6), A301545 (m=7), A301546 (m=8), A301547 (m=9).

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[1/(1-x^k)^DivisorSigma[5, k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp((7*Pi)^(6/7) * (Zeta(7)/3)^(1/7) * n^(6/7) / (3*2^(3/7)) - Zeta'(-5)/2) * (Zeta(7)/(3*Pi))^(251/3528) / (2^(251/1176) * 7^(2015/3528) * n^(2015/3528)).
G.f.: exp(Sum_{k>=1} sigma_6(k)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Oct 26 2018

A301544 Expansion of Product_{k>=1} 1/(1 - x^k)^(sigma_6(k)).

Original entry on oeis.org

1, 1, 66, 796, 7102, 70178, 702813, 6439533, 56938814, 495807251, 4218728690, 34991240657, 284295574638, 2269120791410, 17804772970005, 137455131596032, 1045354069608726, 7839809431539193, 58027706392726849, 424187792875896932, 3064539107659680502
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 23 2018

Keywords

Crossrefs

Product_{k>=1} 1/(1 - x^k)^sigma_m(k): A006171 (m=0), A061256 (m=1), A275585 (m=2), A288391 (m=3), A301542 (m=4), A301543 (m=5), this sequence (m=6), A301545 (m=7), A301546 (m=8), A301547 (m=9).

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[1/(1-x^k)^DivisorSigma[6, k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(8 * 2^(3/8) * Pi * (Zeta(7)/15)^(1/8) * n^(7/8)/7 - Pi*(5/Zeta(7))^(1/8) * n^(1/8) / (504 * 2^(3/8) * 3^(7/8)) + 45*Zeta(7) / (16*Pi^6)) * Zeta(7)^(1/16) / (2^(29/16) * 15^(1/16) * n^(9/16)).
G.f.: exp(Sum_{k>=1} sigma_7(k)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Oct 26 2018

A301547 Expansion of Product_{k>=1} 1/(1 - x^k)^(sigma_9(k)).

Original entry on oeis.org

1, 1, 514, 20198, 414696, 12465714, 373679122, 9181285000, 224372879810, 5583837482767, 132433701077938, 3028947042351535, 68425900639083569, 1518510622688185301, 32936878700790531296, 701684036762210944310, 14726705417058058788172, 304326729686784847885978
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 23 2018

Keywords

Crossrefs

Cf. A006171 (m=0), A061256 (m=1), A275585 (m=2), A288391 (m=3), A301542 (m=4), A301543 (m=5), A301544 (m=6), A301545 (m=7), A301546 (m=8).

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          sigma[9](d), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Oct 26 2018
  • Mathematica
    nmax = 30; CoefficientList[Series[Product[1/(1-x^k)^DivisorSigma[9, k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp((11*Pi)^(10/11) * (Zeta(11)/3)^(1/11) * n^(10/11) / (2^(3/11) * 5^(10/11)) - Zeta'(-9)/2) * (5*Zeta(11)/(3*Pi))^(131/2904) / (2^(131/968) * 11^(1583/2904) * n^(1583/2904)).
G.f.: exp(Sum_{k>=1} sigma_10(k)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Oct 26 2018

A382080 Number of ways to partition the prime indices of n into sets with a common sum.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 20 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.
Also the number of factorizations of n into squarefree numbers > 1 with equal sums of prime indices.

Examples

			The prime indices of 900 are {1,1,2,2,3,3}, with the following partitions into sets with a common sum:
  {{1,2,3},{1,2,3}}
  {{3},{3},{1,2},{1,2}}
So a(900) = 2.
		

Crossrefs

For just sets we have A050320, distinct A050326.
Twice-partitions of this type are counted by A279788.
For just a common sum we have A321455.
MM-numbers of these multiset partitions are A326534 /\ A302478.
For distinct instead of equal sums we have A381633.
For constant instead of strict blocks we have A381995.
Positions of 0 are A381719, counted by A381994.
A000688 counts factorizations into prime powers, distinct A050361.
A001055 counts factorizations, strict A045778.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A317141 counts coarsenings of prime indices, refinements A300383.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]& /@ sps[Range[Length[set]]]];
    Table[Length[Select[mps[prix[n]], SameQ@@Total/@#&&And@@UnsameQ@@@#&]],{n,100}]

A323774 Number of multiset partitions, whose parts are constant and all have the same sum, of integer partitions of n.

Original entry on oeis.org

1, 1, 3, 3, 7, 3, 12, 3, 16, 8, 14, 3, 39, 3, 16, 15, 40, 3, 50, 3, 54, 17, 20, 3, 135, 10, 22, 25, 73, 3, 129, 3, 119, 21, 26, 19, 273, 3, 28, 23, 217, 3, 203, 3, 123, 74, 32, 3, 590, 12, 106, 27, 154, 3, 370, 23, 343, 29, 38, 3, 963, 3, 40, 95, 450, 25, 467, 3
Offset: 0

Views

Author

Gus Wiseman, Jan 27 2019

Keywords

Comments

An unlabeled version of A279789.

Examples

			The a(1) = 1 through a(6) = 12 multiset partitions:
  (1)  (2)     (3)        (4)           (5)              (6)
       (11)    (111)      (22)          (11111)          (33)
       (1)(1)  (1)(1)(1)  (1111)        (1)(1)(1)(1)(1)  (222)
                          (2)(2)                         (3)(3)
                          (2)(11)                        (111111)
                          (11)(11)                       (3)(111)
                          (1)(1)(1)(1)                   (2)(2)(2)
                                                         (111)(111)
                                                         (2)(2)(11)
                                                         (2)(11)(11)
                                                         (11)(11)(11)
                                                         (1)(1)(1)(1)(1)(1)
		

Crossrefs

Cf. A001970, A006171 (constant parts), A007716, A034729, A047966 (uniform partitions), A047968, A279787, A279789 (twice-partitions version), A305551 (equal part-sums), A306017, A319056, A323766, A323775, A323776.

Programs

  • Mathematica
    Table[Length[Join@@Table[Union[Sort/@Tuples[Select[IntegerPartitions[#],SameQ@@#&]&/@ptn]],{ptn,Select[IntegerPartitions[n],SameQ@@#&]}]],{n,30}]
  • PARI
    a(n) = if (n==0, 1, sumdiv(n, d, binomial(numdiv(d) + n/d - 1, n/d))); \\ Michel Marcus, Jan 28 2019

Formula

a(0) = 1; a(n) = Sum_{d|n} binomial(tau(d) + n/d - 1, n/d), where tau = A000005.

A381991 Numbers whose prime indices have a unique multiset partition into constant multisets with distinct sums.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79
Offset: 1

Views

Author

Gus Wiseman, Mar 22 2025

Keywords

Comments

Also numbers with a unique factorization into prime powers with distinct sums of prime indices.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The prime indices of 270 are {1,2,2,2,3}, and there are two multiset partitions into constant multisets with distinct sums: {{1},{2},{3},{2,2}} and {{1},{3},{2,2,2}}, so 270 is not in the sequence.
The prime indices of 300 are {1,1,2,3,3}, of which there are no multiset partitions into constant multisets with distinct sums, so 300 is not in the sequence.
The prime indices of 360 are {1,1,1,2,2,3}, of which there is only one multiset partition into constant multisets with distinct sums: {{1},{1,1},{3},{2,2}}, so 360 is in the sequence.
The terms together with their prime indices begin:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    6: {1,2}
    7: {4}
    9: {2,2}
   10: {1,3}
   11: {5}
   13: {6}
   14: {1,4}
   15: {2,3}
   17: {7}
   18: {1,2,2}
   19: {8}
   20: {1,1,3}
   21: {2,4}
   22: {1,5}
   23: {9}
   24: {1,1,1,2}
   25: {3,3}
		

Crossrefs

For distinct blocks instead of block-sums we have A004709, counted by A000726.
Twice-partitions of this type are counted by A279786.
MM-numbers of these multiset partitions are A326535 /\ A355743.
These are the positions of 1 in A381635.
For no choices we have A381636 (zeros of A381635), counted by A381717.
For strict instead of constant blocks we have A381870, counted by A382079.
Partitions of this type (unique into constant with distinct) are counted by A382301.
Normal multiset partitions of this type are counted by A382203.
A001055 counts multiset partitions, see A317141 (upper), A300383 (lower), A265947.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    pfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#,d]&)/@Select[pfacs[n/d],Min@@#>=d&],{d,Select[Rest[Divisors[n]],PrimePowerQ]}]];
    Select[Range[100],Length[Select[pfacs[#],UnsameQ@@hwt/@#&]]==1&]

A383092 Number of integer partitions of n having at most one permutation with all equal run-lengths.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 7, 10, 13, 16, 22, 28, 34, 46, 58, 69, 90, 114, 141, 178, 216, 271, 338, 418, 506, 630, 769, 941, 1140, 1399, 1675, 2051, 2454, 2975, 3561, 4289, 5094, 6137, 7274, 8692, 10269, 12249, 14414, 17128, 20110, 23767, 27872, 32849, 38346, 45094, 52552, 61533
Offset: 0

Views

Author

Gus Wiseman, Apr 19 2025

Keywords

Examples

			The partition (222211) has 1 permutation with all equal run-lengths: (221122), so is counted under a(10).
The partition (33211111) has no permutation with all equal run-lengths, so is counted under a(13).
The a(1) = 1 through a(7) = 10 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (111)  (22)    (221)    (33)      (322)
                    (211)   (311)    (222)     (331)
                    (1111)  (2111)   (411)     (511)
                            (11111)  (3111)    (2221)
                                     (21111)   (4111)
                                     (111111)  (22111)
                                               (31111)
                                               (211111)
                                               (1111111)
		

Crossrefs

For no choices we have A382915, ranks A382879.
For at least one choice we have A383013, for run-sums A383098, ranks A383110.
The complement is A383090, ranks A383089.
Partitions of this type are ranked by A383091 = positions of terms <= 1 in A382857.
For a unique choice we have A383094, ranks A383112.
For run-sums instead of lengths we have A383095 + A383096, ranks A383099 \/ A383100.
The complement for run-sums is A383097, ranks A383015, positions of terms > 1 in A382877.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A239455 counts Look-and-Say partitions, ranks A351294, conjugate A381432.
A329738 counts compositions with equal run-lengths, ranks A353744.
A329739 counts compositions with distinct run-lengths, ranks A351596, complement A351291.
A351293 counts non-Look-and-Say partitions, ranks A351295, conjugate A381433.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Select[Permutations[#],SameQ@@Length/@Split[#]&]]<=1&]],{n,0,15}]

Formula

a(n) = A382915(n) + A383094(n).

Extensions

More terms from Bert Dobbelaere, Apr 26 2025

A280487 G.f.: Product_{i>=1, j>=1, k>=1, l>=1} 1/(1 - x^(i*j*k*l)).

Original entry on oeis.org

1, 1, 5, 9, 29, 49, 135, 235, 565, 995, 2177, 3821, 7900, 13728, 26974, 46606, 88128, 150644, 276283, 467647, 835708, 1400874, 2448818, 4065230, 6975307, 11470265, 19359345, 31552473, 52488142, 84808548, 139274675, 223191639, 362297234, 576064732, 925295844
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 04 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[1/(1-x^(i*j*k*l)), {i, 1, nmax}, {j, 1, nmax/i}, {k, 1, nmax/i/j}, {l, 1, nmax/i/j/k}], {x, 0, nmax}], x]
    nmax = 50; tau4 = Table[DivisorSum[n, DivisorSigma[0, n/#] * DivisorSigma[0, #] &], {n, 1, nmax}]; s = 1 - x; Do[s *= Sum[Binomial[tau4[[k]], j]*(-1)^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 08 2018 *)

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^tau_4(k), where tau_4() = A007426. - Ilya Gutkovskiy, May 22 2018

A320776 Inverse Euler transform of the number of prime factors (with multiplicity) function A001222.

Original entry on oeis.org

1, 0, 1, 1, 1, 0, -1, -1, 0, 1, 0, -1, -1, -1, 1, 3, 3, -2, -5, -4, 0, 7, 7, 0, -9, -10, 2, 15, 15, -3, -27, -30, 3, 46, 51, 1, -71, -91, -7, 117, 157, 23, -194, -265, -57, 318, 465, 111, -536, -821, -230, 893, 1456, 505, -1485, -2559, -1036, 2433, 4483, 2022
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2018

Keywords

Comments

The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n). The constant term 1 is sometimes taken to be the zeroth part of the Euler transform.

Crossrefs

Number theoretical functions: A000005, A000010, A000203, A001055, A001221, A001222, A008683, A010054.
Inverse Euler transforms: A059966, A320767, A320777, A320778, A320779, A320780, A320781, A320782.

Programs

  • Maple
    # The function EulerInvTransform is defined in A358451.
    a := EulerInvTransform(n -> ifelse(n=0, 1, NumberTheory:-NumberOfPrimeFactors(n))):
    seq(a(n), n = 0..59); # Peter Luschny, Nov 21 2022
  • Mathematica
    EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]];
    Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]];
    EulerInvTransform[Array[PrimeOmega,100]]

A320777 Inverse Euler transform of the number of distinct prime factors (without multiplicity) function A001221.

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 0, 0, -1, -1, 1, 1, 0, -1, 0, 1, -1, -2, 1, 3, 1, -2, -2, 1, 0, -4, 0, 6, 6, -4, -8, 1, 4, -4, -5, 10, 16, -4, -25, -7, 17, 5, -16, 2, 42, 12, -58, -48, 40, 59, -27, -44, 67, 86, -103, -187, 36, 236, 45, -213, -5, 284, -23, -526, -188, 663, 520
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2018

Keywords

Comments

The Euler transform of a sequence q is the sequence of coefficients of x^n, n > 0, in the expansion of Product_{n > 0} 1/(1 - x^n)^q(n). The constant term 1 is sometimes taken to be the zeroth part of the Euler transform.

Crossrefs

Number theoretical functions: A000005, A000010, A000203, A001055, A001221, A001222, A008683, A010054.
Inverse Euler transforms: A059966, A320767, A320776, A320778, A320779, A320780, A320781, A320782.

Programs

  • Mathematica
    EulerInvTransform[{}]={};EulerInvTransform[seq_]:=Module[{final={}},For[i=1,i<=Length[seq],i++,AppendTo[final,i*seq[[i]]-Sum[final[[d]]*seq[[i-d]],{d,i-1}]]];
    Table[Sum[MoebiusMu[i/d]*final[[d]],{d,Divisors[i]}]/i,{i,Length[seq]}]];
    EulerInvTransform[Array[PrimeNu,100]]
Previous Showing 41-50 of 102 results. Next