cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 85 results. Next

A097069 Positive integers n such that 2n - 9 is prime.

Original entry on oeis.org

6, 7, 8, 10, 11, 13, 14, 16, 19, 20, 23, 25, 26, 28, 31, 34, 35, 38, 40, 41, 44, 46, 49, 53, 55, 56, 58, 59, 61, 68, 70, 73, 74, 79, 80, 83, 86, 88, 91, 94, 95, 100, 101, 103, 104, 110, 116, 118, 119, 121, 124, 125, 130, 133, 136, 139, 140, 143, 145, 146, 151, 158, 160
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Sep 15 2004

Keywords

Crossrefs

Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), this seq(k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).

Programs

Formula

Half of p+9 where p is a prime greater than 2.

A097932 Positive integers n such that 2n-19 is prime.

Original entry on oeis.org

11, 12, 13, 15, 16, 18, 19, 21, 24, 25, 28, 30, 31, 33, 36, 39, 40, 43, 45, 46, 49, 51, 54, 58, 60, 61, 63, 64, 66, 73, 75, 78, 79, 84, 85, 88, 91, 93, 96, 99, 100, 105, 106, 108, 109, 115, 121, 123, 124, 126, 129, 130, 135, 138, 141, 144, 145, 148, 150, 151, 156, 163
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Sep 21 2004

Keywords

Crossrefs

Cf. A000040.
Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), this sequence (k=19).

Programs

Formula

Half of p+19 where p is a prime greater than 2.

A153081 Nonnegative numbers k such that 2k + 13 is prime.

Original entry on oeis.org

0, 2, 3, 5, 8, 9, 12, 14, 15, 17, 20, 23, 24, 27, 29, 30, 33, 35, 38, 42, 44, 45, 47, 48, 50, 57, 59, 62, 63, 68, 69, 72, 75, 77, 80, 83, 84, 89, 90, 92, 93, 99, 105, 107, 108, 110, 113, 114, 119, 122, 125, 128, 129, 132, 134, 135, 140, 147, 149, 150, 152, 159, 162, 167
Offset: 1

Views

Author

Vincenzo Librandi, Dec 18 2008

Keywords

Comments

Or, (p-13)/2 for primes p >= 13.
a(n) = (A000040(n+5) - 13)/2.
a(n) = A005097(n+4) - 6.
a(n) = A067076(n+4) - 5.
a(n) = A089038(n+3) - 4.
a(n) = A105760(n+2) - 3.
a(n) = A101448(n+1) - 1.
a(n) = A089559(n-1) + 1 for n > 1.

Examples

			For k = 7, 2*k+13 = 27 is not prime, so 7 is not in the sequence;
for k = 8, 2*k+13 = 29 is prime, so 8 is in the sequence.
		

Crossrefs

Cf. A000040 (prime numbers).
Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), this seq (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).

Programs

Extensions

Edited and extended by Klaus Brockhaus, Dec 22 2008
Definition clarified by Zak Seidov, Jul 11 2014

A097338 Positive integers n such that 2n-11 is prime.

Original entry on oeis.org

7, 8, 9, 11, 12, 14, 15, 17, 20, 21, 24, 26, 27, 29, 32, 35, 36, 39, 41, 42, 45, 47, 50, 54, 56, 57, 59, 60, 62, 69, 71, 74, 75, 80, 81, 84, 87, 89, 92, 95, 96, 101, 102, 104, 105, 111, 117, 119, 120, 122, 125, 126, 131, 134, 137, 140, 141, 144, 146, 147, 152, 159, 161
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Sep 17 2004

Keywords

Crossrefs

Cf. A000040.
Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), this sequence (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).

Programs

Formula

Half of p+11 where p is a prime greater than 2.

A097480 Positive integers n such that 2n-15 is prime.

Original entry on oeis.org

9, 10, 11, 13, 14, 16, 17, 19, 22, 23, 26, 28, 29, 31, 34, 37, 38, 41, 43, 44, 47, 49, 52, 56, 58, 59, 61, 62, 64, 71, 73, 76, 77, 82, 83, 86, 89, 91, 94, 97, 98, 103, 104, 106, 107, 113, 119, 121, 122, 124, 127, 128, 133, 136, 139, 142, 143, 146, 148, 149, 154, 161, 163
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Sep 19 2004

Keywords

Crossrefs

Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), this sequence (k=15), A098605 (k=17), A097932 (k=19).

Programs

Formula

Half of p+15 where p is a prime greater than 2.

A098605 Positive integers n such that 2n - 17 is prime.

Original entry on oeis.org

10, 11, 12, 14, 15, 17, 18, 20, 23, 24, 27, 29, 30, 32, 35, 38, 39, 42, 44, 45, 48, 50, 53, 57, 59, 60, 62, 63, 65, 72, 74, 77, 78, 83, 84, 87, 90, 92, 95, 98, 99, 104, 105, 107, 108, 114, 120, 122, 123, 125, 128, 129, 134, 137, 140, 143, 144, 147, 149, 150, 155, 162
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Sep 20 2004

Keywords

Crossrefs

Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), this sequence (k=17), A097932 (k=19).

Programs

Formula

Half of p+17 where p is a prime greater than 2.

A130290 Number of nonzero quadratic residues modulo the n-th prime.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 8, 9, 11, 14, 15, 18, 20, 21, 23, 26, 29, 30, 33, 35, 36, 39, 41, 44, 48, 50, 51, 53, 54, 56, 63, 65, 68, 69, 74, 75, 78, 81, 83, 86, 89, 90, 95, 96, 98, 99, 105, 111, 113, 114, 116, 119, 120, 125, 128, 131, 134, 135, 138, 140, 141, 146, 153, 155, 156, 158
Offset: 1

Views

Author

M. F. Hasler, May 21 2007

Keywords

Comments

Row lengths for formatting A063987 as a table: The number of nonzero quadratic residues modulo a prime p equals floor(p/2), or (p-1)/2 if p is odd. The number of squares including 0 is (p+1)/2, if p is odd (rows prime(i) of A096008 formatted as a table). In fields of characteristic 2, all elements are squares. For any m > 0, floor(m/2) is the number of even positive integers less than or equal to m, so a(n) also equals the number of even positive integers less than or equal to the n-th prime. For all n > 0, A130290(n+1) = A005097(n) = A102781(n+1) = A102781(n+1) = A130291(n+1)-1 = A111333(n+1)-1 = A006254(n)-1.
From Vladimir Shevelev, Jun 18 2016: (Start)
a(1)+2 and, for n >= 2, a(n)+1 is the smallest k such that there exists 0 < k_1 < k with the condition k_1^2 == k^2 (mod prime(n)).
Indeed, for n >= 2, if prime(n) = 4*t+1 then k = 2*t+1 = a(n)+1, since (2*t+1)^2 == (2*t)^2 (mod prime(n)) and there cannot be a smaller value of k; if prime(n) = 4*t-1, then k = 2*t = a(n)+1, since (2*t)^2 == (2*t-1)^2 (mod prime(n)). (End)
a(n) is the number of pairs (a,b) such that a + b = prime(n) with 1 <= a <= b. - Nicholas Leonard, Oct 02 2022

Examples

			a(1)=1 since the only nonzero element of Z/2Z equals its square.
a(3)=2 since 1=1^2=(-1)^2 and 4=2^2=(-2)^2 are the only nonzero squares in Z/5Z.
a(1000000) = 7742931 = (prime(1000000)-1)/2.
		

Crossrefs

Essentially the same as A005097.
Cf. A102781 (Number of even numbers less than the n-th prime), A063987 (quadratic residues modulo the n-th prime), A006254 (Numbers n such that 2n-1 is prime), A111333 (Number of odd numbers <= n-th prime), A000040 (prime numbers), A130291.
Appears in A217983. - Johannes W. Meijer, Oct 25 2012

Programs

Formula

a(n) = floor( A000040(n)/2 ) = #{ even positive integers <= A000040(n) }
a(n) = A055034(A000040(n)), n>=1. - Wolfdieter Lang, Sep 20 2012
a(n) = A005097(n-[n>1]) = A005097(max(n-1,1)). - M. F. Hasler, Dec 13 2019

A173059 Nonnegative numbers k such that 2*k + 17 is prime.

Original entry on oeis.org

0, 1, 3, 6, 7, 10, 12, 13, 15, 18, 21, 22, 25, 27, 28, 31, 33, 36, 40, 42, 43, 45, 46, 48, 55, 57, 60, 61, 66, 67, 70, 73, 75, 78, 81, 82, 87, 88, 90, 91, 97, 103, 105, 106, 108, 111, 112, 117, 120, 123, 126, 127, 130, 132, 133, 138, 145, 147, 148, 150, 157, 160, 165
Offset: 1

Views

Author

Keywords

Crossrefs

Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), this seq (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), A097363 (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).

Programs

  • GAP
    Filtered([0..200], k-> IsPrime(2*k+17) ); # G. C. Greubel, May 22 2019
  • Magma
    [n: n in [0..200] | IsPrime(2*n+17) ]; // G. C. Greubel, May 22 2019
    
  • Mathematica
    (Prime[Range[7,100]]-17)/2
  • PARI
    is(n)=isprime(2*n+17) \\ Charles R Greathouse IV, Feb 17 2017
    
  • Sage
    [n for n in (0..200) if is_prime(2*n+17) ] # G. C. Greubel, May 22 2019
    

Extensions

Definition clarified by Zak Seidov, Jul 11 2014

A097363 Positive integers n such that 2n-13 is prime.

Original entry on oeis.org

8, 9, 10, 12, 13, 15, 16, 18, 21, 22, 25, 27, 28, 30, 33, 36, 37, 40, 42, 43, 46, 48, 51, 55, 57, 58, 60, 61, 63, 70, 72, 75, 76, 81, 82, 85, 88, 90, 93, 96, 97, 102, 103, 105, 106, 112, 118, 120, 121, 123, 126, 127, 132, 135, 138, 141, 142, 145, 147, 148, 153, 160, 162
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Sep 18 2004

Keywords

Crossrefs

Numbers n such that 2n+k is prime: A005097 (k=1), A067076 (k=3), A089038 (k=5), A105760 (k=7), A155722 (k=9), A101448 (k=11), A153081 (k=13), A089559 (k=15), A173059 (k=17), A153143 (k=19).
Numbers n such that 2n-k is prime: A006254 (k=1), A098090 (k=3), A089253 (k=5), A089192 (k=7), A097069 (k=9), A097338 (k=11), this sequence (k=13), A097480 (k=15), A098605 (k=17), A097932 (k=19).

Programs

Formula

Half of p+13 where p is a prime greater than 2.

A054269 Length of period of continued fraction for sqrt(prime(n)).

Original entry on oeis.org

1, 2, 1, 4, 2, 5, 1, 6, 4, 5, 8, 1, 3, 10, 4, 5, 6, 11, 10, 8, 7, 4, 2, 5, 11, 1, 12, 6, 15, 9, 12, 6, 9, 18, 9, 20, 17, 18, 4, 5, 14, 21, 16, 13, 1, 20, 26, 4, 2, 5, 11, 12, 17, 14, 1, 12, 3, 24, 21, 13, 18, 5, 14, 16, 17, 11, 34, 19, 14, 7, 15, 4, 20, 5, 30, 8, 9, 21, 1, 21, 18, 37, 16
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2000

Keywords

Comments

The following sequences (allowing offset of first term) all appear to have the same parity: A034953, triangular numbers with prime indices; A054269, length of period of continued fraction for sqrt(p), p prime; A082749, difference between the sum of next prime(n) natural numbers and the sum of next n primes; A006254, numbers n such that 2n-1 is prime; A067076, 2n+3 is a prime. - Jeremy Gardiner, Sep 10 2004
Note that primes of the form n^2+1 (A002496) have a continued fraction whose period length is 1; odd primes of the form n^2+2 (A056899) have length 2; odd primes of the form n^2-2 (A028871) have length 4. - T. D. Noe, Nov 03 2006
For an odd prime p, the length of the period is odd if p=1 (mod 4) or even if p=3 (mod 4). - T. D. Noe, May 22 2007

Crossrefs

Cf. A003285, A130272 (primes at which the period length sets a new record).

Programs

  • Maple
    with(numtheory): for i from 1 to 150 do cfr := cfrac(ithprime(i)^(1/2), 'periodic','quotients'); printf(`%d,`, nops(cfr[2])) od:
  • Mathematica
    Table[p=Prime[n]; Length[Last[ContinuedFraction[Sqrt[p]]]],{n,100}] (* T. D. Noe, May 22 2007 *)
    Length[ContinuedFraction[Sqrt[#]][[2]]]&/@Prime[Range[100]] (* Harvey P. Dale, Sep 28 2024 *)

Extensions

More terms from James Sellers, May 05 2000
Previous Showing 21-30 of 85 results. Next