cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A122538 Riordan array (1, x*f(x)) where f(x)is the g.f. of A006318.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 6, 4, 1, 0, 22, 16, 6, 1, 0, 90, 68, 30, 8, 1, 0, 394, 304, 146, 48, 10, 1, 0, 1806, 1412, 714, 264, 70, 12, 1, 0, 8558, 6752, 3534, 1408, 430, 96, 14, 1, 0, 41586, 33028, 17718, 7432, 2490, 652, 126, 16, 1, 0, 206098, 164512, 89898, 39152, 14002, 4080, 938, 160, 18, 1
Offset: 0

Views

Author

Philippe Deléham, Sep 18 2006

Keywords

Comments

Triangle T(n,k), 0<=k<=n, read by rows, given by [0, 2, 1, 2, 1, 2, 1, ...] DELTA [1, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938 . Inverse is Riordan array (1, x*(1-x)/(1+x)).
T(n, r) gives the number of [0,r]-covering hierarchies with n segments terminating at r (see Kreweras work). - Michel Marcus, Nov 22 2014

Examples

			Triangle begins:
  1;
  0,    1:
  0,    2,    1;
  0,    6,    4,    1;
  0,   22,   16,    6,    1;
  0,   90,   68,   30,    8,   1;
  0,  394,  304,  146,   48,  10,  1;
  0, 1806, 1412,  714,  264,  70, 12,  1;
  0, 8558, 6752, 3534, 1408, 430, 96, 14, 1;
Production matrix is:
  0...1
  0...2...1
  0...2...2...1
  0...2...2...2...1
  0...2...2...2...2...1
  0...2...2...2...2...2...1
  0...2...2...2...2...2...2...1
  0...2...2...2...2...2...2...2...1
  0...2...2...2...2...2...2...2...2...1
  ... - _Philippe Deléham_, Feb 09 2014
		

Crossrefs

Another version : A080247, A080245, A033877.
Diagonals: A000012, A005843, A054000.
Sums include: A001003 (row and alternating sign), A006603 (diagonal).
Cf. A103885.

Programs

  • Magma
    function T(n,k) // T = A122538
      if k eq 0 then return 0^n;
      elif k eq n then return 1;
      else return T(n-1,k-1) + T(n-1,k) + T(n,k+1);
      end if;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 27 2024
  • Mathematica
    T[n_, n_]= 1; T[, 0]= 0; T[n, k_]:= T[n, k]= T[n-1, k-1] + T[n-1, k] + T[n, k+1];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* Jean-François Alcover, Jun 13 2019 *)
  • Sage
    def A122538_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return prec(n-1,k-1)-2*sum(prec(n,k+i-1) for i in (2..n-k+1))
        return [(-1)^(n-k)*prec(n, k) for k in (0..n)]
    for n in (0..12): print(A122538_row(n)) # Peter Luschny, Mar 16 2016
    

Formula

T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n,k+1) if k > 0, with T(n, 0) = 0^n, and T(n, n) = 1.
Sum_{k=0..n} T(n, k) = A001003(n).
From G. C. Greubel, Oct 27 2024: (Start)
T(2*n, n) = A103885(n).
Sum_{k=0..n} (-1)^k*T(n, k) = -A001003(n-1).
Sum_{k=0..floor(n/2)} T(n-k, k) = [n=0] + 0*[n=1] + A006603(n-2)*[n>1]. (End)

A129180 Total area below all Schroeder paths of semilength n.

Original entry on oeis.org

0, 1, 11, 85, 583, 3785, 23843, 147437, 900559, 5453457, 32816315, 196531781, 1172634391, 6976059865, 41401814099, 245230349021, 1450162049695, 8563622372129, 50510963880299, 297627067200821, 1752169739791591, 10307304302433513, 60592569330907523
Offset: 0

Views

Author

Emeric Deutsch, Apr 08 2007

Keywords

Comments

A Schroeder path of semilength n is a lattice path from (0,0) to (2n,0) consisting of U=(1,1), D=(1,-1) and H=(2,0) steps and never going below the x-axis.

Examples

			a(2) = 11 because the areas below the Schroeder paths HH, HUD, UDH, UDUD, UHD and UUDD are 0,1,1,2,3 and 4, respectively.
		

Crossrefs

Programs

  • Maple
    g:=(1+z)*(1-z-sqrt(1-6*z+z^2))^2/4/z/(1-6*z+z^2): gser:=series(g,z=0,30): seq(coeff(gser,z,n),n=0..24);
  • Mathematica
    CoefficientList[Series[(1 + x)*(1 - x - Sqrt[1 - 6*x + x^2])^2/(4*x*(1 - 6*x + x^2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 03 2016 *)
  • Maxima
    a(n):=sum((((sqrt(2)+1)^(2*k+1)-(1-sqrt(2))^(2*k)*sqrt(2)+(1-sqrt(2))^(2*k))*sum(binomial(n+1-k,i+2)*binomial(n-k+i,i),i,0,n-k+1))/(n-k+1),k,0,n); /* Vladimir Kruchinin, Mar 02 2016 */

Formula

a(n) = Sum_{k=0..n^2} k * A129179(n,k).
G.f.: (1+z)*(1-z-sqrt(1-6*z+z^2))^2/(4*z*(1-6*z+z^2)) (obtained by computing (dG/dt)_{t=1} where G=G(t,z) is defined by G(t,z) = 1+z*G(t,z)+t*z*G(t,t^2*z)G(t,z); see A129179).
a(n) = Sum_{k=0..n} 2*A002315(k)*(Sum_{i=0..n-k+1} binomial(n+1-k,i+2)*binomial(n-k+i,i))/(n-k+1). - Vladimir Kruchinin, Mar 02 2016
a(n) ~ 1/2 * (1+sqrt(2))^(2*n+1). - Vaclav Kotesovec, Mar 03 2016
D-finite with recurrence -(n+1)*(2*n-5)*a(n) +3*(4*n+1)*(2*n-5)*a(n-1) +(-76*n^2+228*n-89)*a(n-2) +3*(2*n-1)*(4*n-13)*a(n-3) -(2*n-1)*(n-4)*a(n-4)=0. - R. J. Mathar, Jul 26 2022

A370479 G.f. satisfies A(x) = ( 1 + x * (A(x)^(1/2) / (1-x))^2 )^2.

Original entry on oeis.org

1, 2, 9, 40, 184, 872, 4232, 20936, 105208, 535624, 2757000, 14324456, 75028152, 395750568, 2100380424, 11208429960, 60103977976, 323708642952, 1750294676744, 9497584905128, 51703651336888, 282302043458536, 1545558070957960, 8482843567140680
Offset: 0

Views

Author

Seiichi Manyama, Mar 31 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec((1+x*((1-x-sqrt(1-6*x+x^2))/(2*x))^2)^2)
    
  • PARI
    a(n, r=2, s=2, t=2, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));

Formula

G.f.: B(x)^2 where B(x) is the g.f. of A006319.
a(n) = 2 * Sum_{k=0..n} binomial(2*k+2,k) * binomial(n+k-1,n-k)/(2*k+2).

A370480 G.f. satisfies A(x) = ( 1 + x * (A(x)^(1/3) / (1-x))^2 )^3.

Original entry on oeis.org

1, 3, 15, 73, 360, 1800, 9112, 46632, 240936, 1255336, 6589080, 34811784, 184990568, 988156872, 5303039256, 28579068520, 154605138984, 839272725864, 4570409517848, 24961191298248, 136688674353000, 750355591919240, 4128471397725336, 22762905189252264
Offset: 0

Views

Author

Seiichi Manyama, Mar 31 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec((1+x*((1-x-sqrt(1-6*x+x^2))/(2*x))^2)^3)
    
  • PARI
    a(n, r=3, s=2, t=2, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));

Formula

G.f.: B(x)^3 where B(x) is the g.f. of A006319.
a(n) = 3 * Sum_{k=0..n} binomial(2*k+3,k) * binomial(n+k-1,n-k)/(2*k+3).

A382920 G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x) / (1-x)^2 )^3.

Original entry on oeis.org

1, 3, 21, 160, 1320, 11511, 104451, 976317, 9337182, 90937403, 898861308, 8994246132, 90932043400, 927452701605, 9531607969788, 98609173435172, 1026121044859890, 10733030463200814, 112783955395845926, 1190060614961391945, 12604133970419399208, 133945684546835994915
Offset: 0

Views

Author

Seiichi Manyama, Apr 08 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=3, s=2, t=4, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));

Formula

G.f. A(x) satisfies A(x) = ( 1 + x*A(x)^(4/3) / (1-x)^2 )^3.
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(n+(s-1)*k-1,n-k)/(t*k+u*(n-k)+r).
G.f.: B(x)^3, where B(x) is the g.f. of A382916.

A125190 Number of ascents in all Schroeder paths of length 2n.

Original entry on oeis.org

0, 1, 6, 32, 170, 912, 4942, 27008, 148626, 822560, 4573910, 25534368, 143027898, 803467056, 4524812190, 25537728000, 144411206178, 818017823808, 4640757865126, 26364054632480, 149959897539018, 853941394691792, 4867745532495086, 27773897706129792
Offset: 0

Views

Author

Emeric Deutsch, Dec 20 2006

Keywords

Comments

A Schroeder path of length 2n is a lattice path in the first quadrant, from the origin to the point (2n, 0) and consisting of steps U = (1, 1), D = (1, -1) and H = (2, 0); an ascent in a Schroeder path is a maximal strings of U steps.
a(n) is the number of points at L1 distance n - 2 from any point in Z^n, for n >= 2. - Shel Kaphan, Mar 24 2023

Examples

			a(2) = 6 because the Schroeder paths of length 4 are HH, H(U)D, (U)DH, (U)D(U)D, (U)HD and (UU)DD, having a total of 6 ascents (shown between parentheses).
		

Crossrefs

-2-diagonal of A266213 for n>=1.

Programs

  • Maple
    R:=(1-z-sqrt(1-6*z+z^2))/2/z: G:=z*R*(1+z*R)/sqrt(1-6*z+z^2): Gser:=series(G,z=0,30): seq(coeff(Gser,z,n),n=0..25);
    # second Maple program:
    a:= proc(n) option remember;
          `if`(n<3, [0,1,6][n+1], ((204*n^2-411*n+198)*a(n-1)
           +(-34*n^2+68*n+96)*a(n-2) +(3*n-12)*a(n-3))/(2*n*(17*n-26)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 20 2012
  • Mathematica
    CoefficientList[Series[x*(1-x-Sqrt[1-6*x+x^2])/(2*x)*(1+x*(1-x-Sqrt[1-6*x+x^2])/(2*x))/Sqrt[1-6*x+x^2], {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 19 2012 *)
    a[n_] := Sum[ Binomial[n+1, n-i-1]*Binomial[n+i, n], {i, 0, n-1}]; (* or *) a[n_] := Hypergeometric2F1[1-n, 1+n, 3, -1]*n*(n+1)/2; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Feb 05 2013, after Vladimir Kruchinin *)
  • Sage
    A125190 = lambda n : (n^2+n)*hypergeometric([1-n, n+1], [3], -1)/2
    [round(A125190(n).n(100)) for n in (0..23)] # Peter Luschny, Sep 17 2014

Formula

a(n) = Sum_{k=0..n} k * A090981(n, k).
G.f.: z*R*(1 + z*R)/sqrt(1 - 6*z + z^2), where R = 1 + z*R + z*R^2, i.e., R = (1 - z -sqrt(1 - 6*z + z^2))/(2*z).
D-finite Recurrence: 2*n*(17*n - 26)*a(n) = 3*(68*n^2 - 137*n + 66)*a(n-1) - 2*(17*n^2 - 34*n - 48)*a(n-2) + 3*(n - 4)*a(n-3). - Vaclav Kotesovec, Oct 19 2012
a(n) ~ 2^(-3/4)*(3 + 2*sqrt(2))^n/sqrt(Pi*n). - Vaclav Kotesovec, Oct 19 2012
a(n) = Sum_{i=0..n-1} binomial(n+1, n-i-1) * binomial(n+i, n). - Vladimir Kruchinin, Feb 05 2013
a(n) = (n*(n+1)/2)*hypergeometric([1-n, n+1], [3], -1). - Peter Luschny, Sep 17 2014
a(n) = A026002(n) - A190666(n-2) for n >= 2. - Shel Kaphan, Mar 24 2023
a(n) = ((n+1)/2) * A006319(n-1). - Vladimir Kruchinin, Apr 27 2024

A167656 Triangle T(n,k), 0<=k<=n, read by rows given by [1,1,2,1,2,1,2,1,2,1,2,...] DELTA [1,1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 1, 2, 4, 2, 6, 16, 14, 4, 22, 68, 78, 40, 8, 90, 304, 410, 284, 104, 16, 394, 1412, 2122, 1776, 896, 256, 32, 1806, 6752, 10966, 10468, 6496, 2592, 608, 64, 8558, 33028, 56870, 59832, 43016, 21376, 7072, 1408, 128, 41586, 164512, 296498, 336252
Offset: 0

Views

Author

Philippe Deléham, Nov 08 2009

Keywords

Examples

			Triangle begins:
1 ;
1,1 ;
2,4,2 ;
6,16,14,4 ;
22,68,78,40,8 ;
90,304,410,284,104,16 ;
...
		

Crossrefs

Formula

T(n,0) = T(n-1,0) + T(n-1,1).
T(n,1) = T(n-1,0) + 3*T(n-1,1) + T(n-1,2).
T(n,k) = 2*T(n-1,k-1) + 3*T(n-1,k) + T(n-1,k+1) for k>1.

A361229 G.f. A(x) satisfies A(x) = 1 + x^4 * (A(x) / (1 - x))^2.

Original entry on oeis.org

1, 0, 0, 0, 1, 2, 3, 4, 7, 14, 27, 48, 84, 152, 284, 532, 987, 1826, 3401, 6384, 12024, 22656, 42728, 80780, 153151, 290970, 553601, 1054688, 2012373, 3845646, 7359345, 14100692, 27048061, 51941850, 99855389, 192163904, 370159216, 713672568, 1377168108, 2659729380
Offset: 0

Views

Author

Seiichi Manyama, Oct 15 2023

Keywords

Crossrefs

Partial sums give A023426.

Programs

  • Maple
    A361229 := proc(n)
        add(binomial(n-2*k-1,n-4*k) * binomial(2*k,k) / (k+1),k=0..floor(n/4)) ;
    end proc:
    seq(A361229(n),n=0..70) ; # R. J. Mathar, Dec 04 2023
  • PARI
    a(n) = sum(k=0, n\4, binomial(n-2*k-1, n-4*k)*binomial(2*k, k)/(k+1));

Formula

G.f.: A(x) = 2*(1-x) / (1-x+sqrt((1-x)^2-4*x^4)).
a(n) = Sum_{k=0..floor(n/4)} binomial(n-2*k-1,n-4*k) * binomial(2*k,k) / (k+1).
D-finite with recurrence (n+4)*a(n) +(-3*n-7)*a(n-1) +(3*n+2)*a(n-2) +(-n+1)*a(n-3) +4*(-n+2)*a(n-4) +4*(n-4)*a(n-5)=0. - R. J. Mathar, Dec 04 2023

A382918 G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x) / (1-x)^2 )^2.

Original entry on oeis.org

1, 2, 11, 64, 401, 2652, 18241, 129216, 936469, 6911238, 51764834, 392494366, 3006851913, 23238830982, 180974578418, 1418728452902, 11186978492689, 88668723061112, 706042492550773, 5645331629000370, 45307653034905824, 364860349786846894, 2947299389835541583
Offset: 0

Views

Author

Seiichi Manyama, Apr 08 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=2, s=2, t=3, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));

Formula

G.f. A(x) satisfies A(x) = ( 1 + x*A(x)^(3/2) / (1-x)^2 )^2.
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(n+(s-1)*k-1,n-k)/(t*k+u*(n-k)+r).
G.f.: B(x)^2, where B(x) is the g.f. of A366176.

A052736 E.g.f. [1 -3x -sqrt(1-6x+x^2) -x*(1-x-sqrt(1-6x+x^2)) ]/2.

Original entry on oeis.org

0, 0, 2, 24, 384, 8160, 218880, 7116480, 272240640, 11985200640, 596981145600, 33195609216000, 2038500521164800, 137021183973273600, 10006412139653529600, 788930789450259456000, 66790064645111808000000, 6042970648669883056128000, 581917311773908793819136000, 59423732260666221275283456000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Programs

  • Maple
    spec := [S,{B=Prod(Z,C),S=Prod(C,C),C=Union(B,S,Z)},labeled]: seq(combstruct[count](spec,size=n), n=0..20); # end of program
    0, seq(simplify( n!*(n-1)*hypergeom([n, 2-n],[3],-1) ), n=1..20);  # Mark van Hoeij, May 29 2013
  • Mathematica
    CoefficientList[Series[1/2-3/2*x-1/2*(1-6*x+x^2)^(1/2)-(1/2-1/2*x-1/2*(1-6*x+x^2)^(1/2))*x, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 05 2013 *)
  • PARI
    x='x+O('x^66); concat([0,0], Vec( serlaplace( 1/2-3/2*x -1/2*(1-6*x+x^2)^(1/2) -(1/2-1/2*x-1/2*(1-6*x+x^2)^(1/2))*x))) \\ Joerg Arndt, May 29 2013

Formula

D-finite with recurrence: a(1)=0; a(2)=2; a(3)=24; (-n^3-n^2+4*n+4)*a(n) +(-6+7*n^2+11*n)*a(n+1) +(-7*n-10)*a(n+2) +a(n+3) =0.
a(n) ~ (2-sqrt(2))*sqrt(3*sqrt(2)-4)*n^(n-1)*(3+2*sqrt(2))^n/exp(n). - Vaclav Kotesovec, Oct 05 2013
Conjecture: a(n) = n!*A006319(n-1). - R. J. Mathar, Oct 16 2013
Previous Showing 21-30 of 32 results. Next