cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 61 results. Next

A306266 Number of reciprocally monophyletic coalescence sequences for 2n lineages, n each in 2 species.

Original entry on oeis.org

1, 2, 54, 6480, 2268000, 1837080000, 2970558360000, 8650265944320000, 42040292489395200000, 321608237543873280000000, 3696886690566823353600000000, 61486619437507406017075200000000, 1433990938521547723130227814400000000
Offset: 1

Views

Author

Noah A Rosenberg, Feb 01 2019

Keywords

Comments

Consider a binary tree evolving in time from a single node until the tree has 2n labeled leaves. Color the 2n leaves in 2 colors, red and blue, assigning n leaves to each color. Suppose coalescences of pairs of leaves happen at distinct times (i.e., no simultaneous mergers). A coalescence sequence is a sequence of coalescence events backward in time, tracing the reduction of the 2n leaves to the single ancestral node. A reciprocally monophyletic coalescence sequence is a sequence in which all n red leaves have a common ancestor node that is not the ancestor of any blue leaves, and all n blue leaves have a common ancestor node that is not the ancestor of any red leaves.

Examples

			For n=2, consider two red leaves R1 and R2 and two blue leaves B1 and B2. In a reciprocally monophyletic coalescence sequence, the pair of red leaves must coalesce, and the pair of blue leaves must coalesce. These events can occur in either of two orders (red first or blue first), so that a(2)=2.
		

Crossrefs

The total number of coalescence sequences for n leaves, from among which the reciprocally monophyletic coalescence sequences are identified, follows A006472.

Programs

  • Maple
    a:= n-> n!^2*(2*n-2)!/2^(2*n-2):
    seq(a(n), n=1..15);  - Alois P. Heinz, Feb 07 2019
  • Mathematica
    Table[(n!)^2*(2n - 2)!/2^(2n - 2), {n, 1, 30}]

Formula

a(n) = (n!)^2*(2*n-2)! / 2^(2*n-2).
a(n) ~ 4*exp(-4*n)*n^(4*n-1/2)*Pi^(3/2). - Stefano Spezia, Apr 30 2024

A328299 Number of n-step walks on cubic lattice starting at (0,0,0), ending at (floor(n/3), floor((n+1)/3), floor((n+2)/3)), remaining in the first (nonnegative) octant and using steps (0,0,1), (0,1,0), (1,0,0), (-1,1,1), (1,-1,1), and (1,1,-1).

Original entry on oeis.org

1, 1, 3, 12, 41, 179, 909, 3968, 19680, 106368, 516905, 2717631, 15139485, 77813569, 422589823, 2395441908, 12734635078, 70577595746, 404540380566, 2199035619696, 12356298623126, 71368686011040, 394076753535029, 2236273925952447, 12988459939106601
Offset: 0

Views

Author

Alois P. Heinz, Oct 11 2019

Keywords

Examples

			a(2) = 3: [(0,0,0),(1,0,0),(0,1,1)], [(0,0,0),(0,1,0),(0,1,1)], [(0,0,0),(0,0,1),(0,1,1)].
		

Crossrefs

Programs

  • Maple
    b:= proc(l) option remember; `if`(l[-1]=0, 1, (r-> add(
          add(add(`if`(i+j+k=1, (h-> `if`(h[1]<0, 0, b(h)))(
          sort(l-[i, j, k])), 0), k=r), j=r), i=r))([$-1..1]))
        end:
    a:= n-> b([floor((n+i)/3)$i=0..2]):
    seq(a(n), n=0..24);
  • Mathematica
    b[l_] := b[l] = If[Last[l] == 0, 1, Sum[If[i + j + k == 1, Function[h, If[h[[1]] < 0, 0, b[h]]][Sort[l - {i, j, k}]], 0], {i, {-1, 0, 1}}, {j, {-1, 0, 1}}, {k, {-1, 0, 1}}]];
    a[n_] := b[Table[Floor[(n+i)/3], {i, 0, 2}]];
    a /@ Range[0, 24] (* Jean-François Alcover, May 12 2020, after Maple *)

A339411 Product of partial sums of odd squares.

Original entry on oeis.org

1, 1, 10, 350, 29400, 4851000, 1387386000, 631260630000, 429257228400000, 415950254319600000, 553213838245068000000, 979741707532015428000000, 2253405927323635484400000000, 6591212337421633791870000000000, 24084289880938649875492980000000000, 108258883014819231190340945100000000000
Offset: 0

Views

Author

Werner Schulte, Dec 03 2020

Keywords

Comments

a(n) is also the number of labeled histories across all trifurcating labeled topologies on trees with non-simultaneous trifurcations, where the number of leaves is 2n+1. - Noah A Rosenberg, Feb 24 2025

Examples

			a(4) = (1^2) * (1^2 + 3^2) * (1^2 + 3^2 + 5^2) * (1^2 + 3^2 + 5^2 + 7^2) = 1 * 10 * 35 * 84 = 29400.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(n=0, 1, a(n-1)*(4*n^3-n)/3)
        end:
    seq(a(n), n=0..15);  # Alois P. Heinz, Dec 03 2020
  • Mathematica
    Array[((2 #)!*(2 # + 1)!)/(#!*12^#) &, 16, 0] (* Michael De Vlieger, Dec 10 2020 *)
  • PARI
    for(n=0,9,print((2*n)!*(2*n+1)!/(n!*12^n)))
    
  • PARI
    for(n=0,9,print(prod(i=1,n,sum(j=1,i,(2*j-1)^2))))

Formula

a(n) = Product_{i=1..n} (Sum_{j=1..i} (2*j - 1)^2).
a(n) = Product_{i=1..n} binomial(2*i + 1, 3).
a(n) = Product_{i=1..n} A000447(i).
a(n) = ((2*n)! * (2*n+1)!) / (n! * 12^n).
a(n) / A135438(n) = A000108(n).
a(n) = (Gamma(2*n + 2)*Gamma(n + 1/2))/(3^n*sqrt(Pi)). - Peter Luschny, Dec 11 2020
D-finite with recurrence 3*a(n) -n*(2*n-1)*(2*n+1)*a(n-1)=0. - R. J. Mathar, Jan 25 2023

A375835 Triangle read by rows: T(n, k) is the number of chains of length k in the poset of permutations of an n-set.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 6, 8, 3, 0, 24, 64, 59, 18, 0, 120, 574, 970, 695, 180, 0, 720, 5858, 16124, 20240, 11955, 2700, 0, 5040, 67752, 285264, 556591, 559895, 282555, 56700, 0, 40320, 880584, 5459712, 15519287, 23585870, 19879370, 8780940, 1587600, 0, 362880, 12746208, 113511982, 451541898, 971214825, 1213062690, 882179550, 347072040, 57153600
Offset: 0

Views

Author

Rajesh Kumar Mohapatra, Aug 31 2024

Keywords

Examples

			The triangle T(n,k) begins:
  n\k 0    1      2      3      4       5      6      7 ...
  0   1
  1   0    1
  2   0    2      1
  3   0    6      8      3
  4   0   24     64     59     18
  5   0  120    574    970    695     180
  6   0  720   5858  16124  20240   11955   2700
  7   0 5040  67752 285264 556591  559895 282555  56700
  ...
The T(3, 2) = 8 chains in the poset of the permutations of {1, 2, 3} are:
{(1)(2)(3) < (1)(23), (1)(2)(3) < (2)(13), (1)(2)(3) < (3)(12), (1)(2)(3) < (123),(1)(2)(3) < (132), (1)(23) < (123), (2)(13) < (132), (3)(12) < (123)}.
		

Crossrefs

Cf. A000007 (column k=0), A000142 (column k=1), A006472 (main diagonal), A375836 (row sums).

Programs

  • Maple
    b := proc(n, k, t) option remember; if k < 0 then return 0 fi; if {n, k} = {0} then return 1 fi; add(ifelse(k = 1, 1, b(v, k - 1, 1))*abs(Stirling1(n, v)), v = k..n-t) end: T := (n, k) -> b(n, k, 0): seq((seq(T(n, k), k=0..n)), n = 0..10);  # Peter Luschny, Sep 05 2024
  • Mathematica
    b[n_, k_, t_] := b[n, k, t] = If[k < 0, 0, If[n == 0 && k == 0, 1,
    Sum[If[k == 1, 1, b[v, k - 1, 1]] * Abs[StirlingS1[n, v]], {v, k, n - t}]]];
    T[n_, k_] := b[n, k, 0]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]

Formula

Let Stirling1(n, k) denote the unsigned Stirling numbers of the first kind (A132393).
T(0, 0) = 1, T(0, k) = 0 for k > 0.
T(n, k) = Sum_{i_k=k..n} (Sum_{i_(k-1)=k-1..i_k - 1} (... (Sum_{i_2=2..i_3 - 1} (Sum_{i_1=1..i_2 - 1} Stirling1(n, i_k) * Stirling1(i_k, i_(k-1)) * ... * Stirling1(i_3, i_2) * Stirling1(i_2, i_1)))...)), where 1 <= k <= n.

A378234 From higher-order arithmetic progressions: Corrected version of A259461.

Original entry on oeis.org

40, 5000, 472500, 43218000, 4148928000, 432081216000, 49509306000000, 6275893932000000, 881135508052800000, 136878615942868800000, 23474682634201999200000, 4432282735129048800000000, 918537831584839065600000000, 208281986149676045967360000000, 51516317681413623440962560000000
Offset: 0

Views

Author

Georg Fischer, Dec 16 2024

Keywords

Comments

Only the first 5 terms of A259461 are correct. - R. J. Mathar, Jul 14 2015
"2 over n!" on page 13 in the Dienger article is A006472; A_3 is A001303.

Crossrefs

Programs

  • Maple
    rV := proc(n,a,d)
        n*(n+1)/2*a+(n-1)*n*(n+1)/6*d;
    end proc:
    A259461 := proc(n)
        mul(rV(i,a,d),i=1..n+3) ;
        coeftayl(%,d=0,3) ;
        coeftayl(%,a=0,n) ;
    end proc:
    seq(A259461(n),n=1..5) ; # R. J. Mathar, Jul 14 2015

Formula

D-finite with recurrence: -2*n*(n+2)*a(n) + (n+4)^3*(n+5)*a(n-1) = 0.
a(n) = (n+5)!*(n+4)!^3 / (1296*2^(n+4)*n!^2*(n+2)*(n+1)).

A133401 Diagonal of polygorial array T(n,k) = n-th polygorial for k = n, for n > 2.

Original entry on oeis.org

18, 576, 46200, 7484400, 2137544640, 981562982400, 678245967907200, 670873729125600000, 913601739437346960000, 1660189302321994373529600, 3923769742187622047360640000, 11805614186177306251101945600000, 44403795869109177300313209696000000
Offset: 3

Views

Author

Jonathan Vos Post, Nov 25 2007

Keywords

Comments

Array T(n,k) = k-th polygorial(n,k) begins:
k | polygorial(n,k)
3 | 1 1 3 18 180 2700 56700 1587600 57153600
4 | 1 1 4 36 576 14400 518400 25401600 1625702400
5 | 1 1 5 60 1320 46200 2356200 164934000 15173928000
6 | 1 1 6 90 2520 113400 7484400 681080400 81729648000
7 | 1 1 7 126 4284 235620 19085220 2137544640 316356606720
8 | 1 1 8 168 6720 436800 41932800 5577062400 981562982400
9 | 1 1 9 216 9936 745200 82717200 12738448800 2598643555200
10 | 1 1 10 270 14040 1193400 150368400 26314470000 6104957040000

Examples

			a(3) = polygorial(3,3) = A006472(3) = product of the first 3 triangular numbers = 1*3*6 = 18.
a(4) = polygorial(4,4) = A001044(4) = product of the first 4 squares = 1*4*9*16 = 576.
a(5) = polygorial(5,5) = A084939(5) = product of the first 5 pentagonal numbers = 1*5*12*22*35 = 46200.
		

Crossrefs

Programs

  • Maple
    A133401 := proc(n) return mul((n/2-1)*m^2-(n/2-2)*m,m=1..n): end: seq(A133401(n),n=3..15); # Nathaniel Johnston, May 05 2011
  • Mathematica
    Table[Product[m*(4 - n + m*(n-2))/2, {m, 1, n}],{n, 3, 20}] (* Vaclav Kotesovec, Feb 20 2015 *)
    Table[FullSimplify[(n-2)^n * Gamma[n+1] * Gamma[n+2/(n-2)] / (2^n*Gamma[2/(n-2)])],{n,3,15}] (* Vaclav Kotesovec, Feb 20 2015 *)
    polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k - 2), n]]; Array[ polygorial[#, #] &, 13, 3] (* Robert G. Wilson v, Dec 13 2016 *)

Formula

a(n) ~ Pi * n^(3*n-1) / (2^(n-2) * exp(2*n+2)). - Vaclav Kotesovec, Feb 20 2015

Extensions

Edited by Nathaniel Johnston, May 05 2011

A140701 Partial products of A005448.

Original entry on oeis.org

1, 1, 4, 40, 760, 23560, 1083760, 69360640, 5895654400, 642626329600, 87397180825600, 14507932017049600, 2887078471392870400, 678463440777324544000, 185898982772986925056000, 58744078556263868317696000, 21206612358811256462688256000
Offset: 0

Views

Author

Jonathan Vos Post, May 24 2008

Keywords

Examples

			a(10) = 87397180825600 = 1 * 4 * 10 * 19 * 31 * 46 * 64 * 85 * 109 * 136.
		

Crossrefs

Cf. A005448.
For analog with centered n-gonal numbers see A140702.
For analog with regular triangular numbers see A006472.
For the analog with a partial sum instead of a partial product see A006003.

Programs

  • Mathematica
    Table[Product[(3*k^2-3*k+2)/2,{k,1,n}],{n,1,20}] (* Vaclav Kotesovec, Jul 11 2015 *)
    FoldList[Times,3*Accumulate[Range[0,20]]+1] (* Harvey P. Dale, Aug 05 2018 *)
  • PARI
    a(n) = prod(k=1, n, 3*k*(k-1)/2 + 1); \\ Michel Marcus, Mar 02 2023

Formula

a(n) = Product_{k=1..n} A005448(k).
a(n) ~ cosh(Pi*sqrt(5/3)/2) * 3^n * n^(2*n) / (exp(2*n) * 2^(n-1)). - Vaclav Kotesovec, Jul 11 2015
a(n) = (2/3)^(1 - n) * Pochhammer(1 + (3 - i*sqrt(15))/6, n - 1) * Pochhammer(1 + (3 + i*sqrt(15))/6, n - 1), for n>=1. - Antonio Graciá Llorente, Sep 10 2023

A140702 Main diagonal of array A(k,n) = product of first n centered n-gonal numbers.

Original entry on oeis.org

40, 1625, 151776, 27316471, 8429601664, 4108830350625, 2977546171600000, 3062351613203813051, 4308809606735976861696, 8050856986181775515023417, 19490752185922086291273856000, 59888297825402713913058605859375, 229474927848540723655596345639141376
Offset: 3

Views

Author

Jonathan Vos Post, May 24 2008

Keywords

Comments

For analog with regular (not centered) n-gonal numbers, see A133401.
Array A(k,n) = k-th polygorial(n,k) begins:
k | CenteredPolygorial(n,k)
---+-------------------------
3 | 1 4 40 760 23560 1083760 69360640 5895654400 A140701
4 | 1 5 65 1625 66625 4064125 345450625 39035920625
5 | 1 6 96 2976 151776 11534976 1222707456 172401751296
6 | 1 7 133 4921 300181 27316471 3469191817 586293417073
7 | 1 8 176 7568 537328 56956768 8429601664 1660631527808
8 | 1 9 225 11025 893025 108056025 18261468225 4108830350625
9 | 1 10 280 15400 1401400 190590400 36212176000 9161680528000

Examples

			a(3) = 3rd centered polygorial number polygorial(3,3) = A140701(3) = product of the first 3 centered triangular numbers = 1 * 4 * 10 = 40.
a(4) = 4th centered polygorial number centered polygorial(4,4) = product of the first 4 centered square numbers A001844 = 1 * 5 * 13 * 25 = 1625.
a(5) = 5th centered pentagorial number centered polygorial(5,5) = product of the first 5 centered pentagonal numbers A005891 = 1 * 5 * 12 * 22 * 35 = 151776.
a(6) = 6th centered hexagorial number centered polygorial(6,6) = product of the first 6 centered hexagonal numbers A003215 = 1 * 7 * 19 * 37 * 61 * 91 = 27316471.
		

Crossrefs

Programs

Formula

a(n) ~ Pi * n^(3*n-1) / (exp(2*n) * 2^(n-2)). - Vaclav Kotesovec, Jul 11 2015

Extensions

a(9) corrected and more terms from Nathaniel Johnston, Oct 01 2011

A330778 Triangle read by rows: T(n,k) is the number of balanced reduced multisystems of weight n with maximum depth and atoms colored using exactly k colors.

Original entry on oeis.org

1, 1, 1, 1, 4, 3, 2, 17, 33, 18, 5, 86, 321, 420, 180, 16, 520, 3306, 7752, 7650, 2700, 61, 3682, 37533, 140172, 238560, 189000, 56700, 272, 30050, 473604, 2644356, 6899070, 9196740, 6085800, 1587600, 1385, 278414, 6630909, 53244180, 199775820, 398328480, 435954960, 247665600, 57153600
Offset: 1

Views

Author

Andrew Howroyd, Dec 30 2019

Keywords

Examples

			Triangle begins:
    1;
    1,     1;
    1,     4,      3;
    2,    17,     33,      18;
    5,    86,    321,     420,     180;
   16,   520,   3306,    7752,    7650,    2700;
   61,  3682,  37533,  140172,  238560,  189000,   56700;
  272, 30050, 473604, 2644356, 6899070, 9196740, 6085800, 1587600;
  ...
		

Crossrefs

Column 1 is A000111.
Main diagonal is A006472.
Row sums are A330676.
Cf. A330776.

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    R(n, k)={my(v=vector(n), u=vector(n)); v[1]=k; for(n=1, #v, for(i=n, #v, u[i] += v[i]*(-1)^(i-n)*binomial(i-1, n-1)); v=EulerT(v)); u}
    M(n)={my(v=vector(n, k, R(n, k)~)); Mat(vector(n, k, sum(i=1, k, (-1)^(k-i)*binomial(k, i)*v[i])))}
    {my(T=M(10)); for(n=1, #T~, print(T[n, 1..n]))}

A334129 Numbers that can be written as a product of one or more consecutive triangular numbers.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 18, 21, 28, 36, 45, 55, 60, 66, 78, 91, 105, 120, 136, 150, 153, 171, 180, 190, 210, 231, 253, 276, 300, 315, 325, 351, 378, 406, 435, 465, 496, 528, 561, 588, 595, 630, 666, 703, 741, 780, 820, 861, 900, 903, 946, 990, 1008, 1035
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 14 2020

Keywords

Crossrefs

Programs

  • Mathematica
    lmt = 1050; t = PolygonalNumber[3, #] & /@ Range[0, Sqrt[ 2lmt]]; f[n_] := Select[ Times @@@ Partition[t, n +1, 1], # < lmt &]; lst = {}; k = 0; While[f@k != {}, lst = Join[lst, f@k]; k++]; Union@lst (* Robert G. Wilson v, Apr 16 2020 *)
  • PARI
    list(lim)=if(lim<1, return(if(lim<0,[],[0]))); my(v=List([0,1]),t=1,m=2); lim\=1; while(t<=lim, listput(v,t); t=m*m++/2); for(e=1,m, for(i=3,m-e, t=factorback(Vec(v[i..i+e])); if(t>lim, break); listput(v,t))); Set(v) \\ Charles R Greathouse IV, Apr 16 2020
Previous Showing 31-40 of 61 results. Next