cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 61 results. Next

A334130 Numbers that can be written as a product of distinct triangular numbers.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 18, 21, 28, 30, 36, 45, 55, 60, 63, 66, 78, 84, 90, 91, 105, 108, 120, 126, 135, 136, 150, 153, 165, 168, 171, 180, 190, 198, 210, 216, 231, 234, 253, 270, 273, 276, 280, 300, 315, 325, 330, 351, 360, 378, 396, 406, 408, 420, 435, 450
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 14 2020

Keywords

Crossrefs

Programs

  • Maple
    N:= 1000: # for all terms <= N
    S:= {0,1}:
    for i from 2 do
      t:= i*(i+1)/2;
      if t > N then break fi;
      S:= S union select(`<=`,map(`*`,S,t),N)
    od:
    sort(convert(S,list)); # Robert Israel, Apr 21 2020

A367574 Decimal expansion of BesselI(0,2*sqrt(2)).

Original entry on oeis.org

4, 2, 5, 2, 3, 5, 0, 8, 7, 9, 5, 0, 2, 6, 2, 3, 8, 2, 5, 2, 9, 3, 2, 3, 0, 8, 2, 4, 0, 8, 9, 5, 1, 0, 3, 0, 2, 1, 0, 7, 6, 8, 6, 0, 9, 8, 2, 2, 7, 0, 6, 7, 5, 3, 6, 4, 4, 7, 4, 3, 2, 1, 9, 9, 9, 6, 9, 3, 7, 7, 7, 8, 1, 1, 3, 0, 4, 2, 0, 6, 4, 4, 7, 8, 7, 0, 3, 8, 6, 7, 2, 8, 0, 1, 8, 9, 7, 2, 8, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 28 2023

Keywords

Examples

			4.252350879502623825293230824089510302...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[BesselI[0, 2 Sqrt[2]], 10, 100][[1]]

Formula

Equals Sum_{k>=0} 2^k / k!^2.
Equals Sum_{i>=0} (i+1)/Product_{j=1..i} A000217(j). - Davide Rotondo, Feb 25 2025

A375837 Triangle read by rows: T(n,k) is the number of rooted chains starting with the cycle (1)(2)(3)...(n) of length k of permutation poset of n letters.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 5, 3, 0, 1, 23, 41, 18, 0, 1, 119, 455, 515, 180, 0, 1, 719, 5139, 10985, 9255, 2700, 0, 1, 5039, 62713, 222551, 334040, 225855, 56700, 0, 1, 40319, 840265, 4619447, 10899840, 12686030, 7193340, 1587600, 0, 1, 362879, 12383329, 101128653, 350413245, 620801580, 592261110, 289918440, 57153600
Offset: 0

Views

Author

Rajesh Kumar Mohapatra, Ranjan Kumar Dhani, and Subhashree Sahoo, Aug 31 2024

Keywords

Examples

			Triangle T(n,k) begins:
  n\k | 0  1   2     3     4      5      6     7 ...
 -----+-----------------------------------------
  0   | 1;
  1   | 0, 1;
  2   | 0, 1, 1;
  3   | 0, 1, 5, 3;
  4   | 0, 1, 23, 41, 18;
  5   | 0, 1, 119, 455, 515, 180;
  6   | 0, 1, 719, 5139, 10985, 9255, 2700;
  7   | 0, 1, 5039, 62713, 222551, 334040, 225855, 56700;
  ...
The T(3, 2) = 5 chains in the poset of the permutations of {1, 2, 3} are: {(1)(2)(3) < (1)(23), (1)(2)(3) < (2)(13), (1)(2)(3) < (3)(12), (1)(2)(3) < (123),(1)(2)(3) < (132)}.
		

Crossrefs

Cf. A000007 (column k=0), A057427 (column k=1), A006472 (diagonal), A375838 (row sums).

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = If[k < 0 || k > n, 0, If[(n == 0 && k == 0) || k == 1, 1, Sum[If[r >= 0, Abs[StirlingS1[n, r]]*T[r, k - 1], 0], {r, k - 1, n - 1}]]]; Table[T[n, k], {n, 0, 20}, {k, 0, n}] // Flatten (* corrected Jul 01 2025 *)

Formula

Let Stirling1(n, k) denote the unsigned Stirling numbers of the first kind (A132393).
T(0, 0) = 1, T(0, k) = 0 for k > 0 and T(n, 1) = 1 for n > 1.
T(n, k) = Sum_{i_(k-1)=k-1..n-1} (Sum_{i_(k-2)=k-2..i_(k-1) - 1} (... (Sum_{i_2=2..i_3 - 1} (Sum_{i_1=1..i_2 - 1} Stirling1(n,i_(k-1)) * Stirling1(i_(k-1),i_(k-2)) * ... * Stirling1(i_3,i_2) * Stirling1(i_2,i_1)))...)), where 2 <= k <= n.

A386710 Decimal expansion of BesselI(2, 2 * sqrt(2)).

Original entry on oeis.org

1, 8, 5, 7, 5, 1, 7, 7, 8, 0, 2, 2, 9, 2, 1, 9, 1, 0, 8, 7, 7, 0, 5, 9, 8, 1, 8, 7, 6, 5, 3, 1, 3, 7, 1, 5, 0, 1, 3, 9, 0, 4, 9, 0, 9, 1, 1, 3, 5, 7, 0, 5, 0, 9, 1, 7, 2, 0, 6, 3, 4, 6, 3, 6, 1, 1, 2, 0, 8, 2, 2, 2, 1, 6, 4, 7, 0, 8, 7, 1, 8, 0, 7, 3, 4, 5, 8, 2, 7, 2, 2, 8, 3, 0, 6, 6, 5, 7, 7, 3, 9, 3, 8, 5, 8
Offset: 1

Views

Author

Kelvin Voskuijl, Jul 30 2025

Keywords

Examples

			1.8575177802292191087705981876531371501390490911357...
		

Crossrefs

Cf. A386927 (continued fraction).
Cf. A096789 (for factorial squared).
Cf. A006472 (triangular polygorials).

Programs

  • Mathematica
    RealDigits[BesselI[2, 2 * Sqrt[2]],10,100][[1]] (* Stefano Spezia, Aug 02 2025 *)
  • PARI
    besseli(2, 2*sqrt(2)) \\ Amiram Eldar, Aug 02 2025

Formula

Equals Sum_{k >= 1} 2^k/((k-1)!*(k+1)!).

A006473 a(n) = binomial(n,2)!/n!.

Original entry on oeis.org

1, 30, 30240, 1816214400, 10137091700736000, 7561714896123855667200000, 1025113885554181044609786839040000000, 32964677266721834921175915315161407370035200000000, 318071672921132854486459356650996997744817246158245068800000000000
Offset: 3

Views

Author

Keywords

Comments

a(n) is also the number of distinct possible (n-1)-dimensional simplices if the (n-1)*n/2 1-faces are given (up to symmetry, rotation, reflection). - Dan Dima, Nov 03 2011
a(n) is also the number of edge labelings of the complete graph on n vertices. - Nikos Apostolakis, Jul 09 2013

Examples

			a(3)=1 since there is one possible triangle if the 3 edges are given and a(4)=30 since there are 30 distinct possible tetrahedra if the 6 edges are given. - _Dan Dima_, Nov 03 2011
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    Table[Binomial[n,2]!/n!,{n,3,20}] (* Harvey P. Dale, May 08 2013 *)

A061213 a(n) = 1 + product of first n positive triangular numbers (A000217).

Original entry on oeis.org

2, 4, 19, 181, 2701, 56701, 1587601, 57153601, 2571912001, 141455160001, 9336040560001, 728211163680001, 66267215894880001, 6958057668962400001, 834966920275488000001, 113555501157466368000001
Offset: 1

Views

Author

Amarnath Murthy, Apr 21 2001

Keywords

Examples

			a(6) = 1 * 3 * 6 * 10 *15 * 21 + 1 = 56701.
		

Crossrefs

Programs

  • Maple
    for n from 1 to 30 do printf(`%d,`,1+product(j*(j+1)/2, j=1..n)) od:
  • PARI
    a(n) = { 1 + prod(k=1, n, k*(k + 1)/2) } \\ Harry J. Smith, Jul 19 2009

Formula

a(n) = A006472(n+1) + 1.
a(n) = (n*(n+1)/2)*(a(n-1)-1) + 1.

Extensions

More terms from James Sellers, Apr 24 2001
Offset changed from 0 to 1 and example corrected by Harry J. Smith, Jul 19 2009

A139769 T(n,k) = [x^k] Product_{m=1..n} d/dx Sum_{i=1..m} x^i; triangle read by rows, n >= 0, 0 <= k <= A161680(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 4, 7, 6, 1, 6, 18, 36, 49, 46, 24, 1, 8, 33, 94, 204, 354, 497, 562, 501, 326, 120, 1, 10, 52, 188, 528, 1222, 2406, 4102, 6116, 7996, 9132, 9014, 7541, 5116, 2556, 720, 1, 12, 75, 326, 1105, 3106, 7513, 16014, 30558, 52752, 82938, 119230, 156983
Offset: 0

Views

Author

Roger L. Bagula, Jun 13 2008

Keywords

Comments

Row sums are A006472(n+1).
T(n, binomial(n,2)-k) is the number of rank-k intervals in the middle order on permutations. (See Bouvel et al. reference.) - Bridget Tenner, May 24 2024

Examples

			Triangle T(n,k) begins:
  1;
  1;
  1, 2;
  1, 4,  7,  6;
  1, 6, 18, 36,  49,  46,  24;
  1, 8, 33, 94, 204, 354, 497, 562, 501, 326, 120;
  ...
		

Crossrefs

Cf. A000142, A008302 (Mahonian numbers), A006472, A010551, A161680, A259459.

Programs

  • Mathematica
    a := Table[CoefficientList[Product[Sum[D[x^i, x], {i, 1, m}], {m, 1, n}], x], {n, 0, 7}]; Flatten[a]

Formula

From Alois P. Heinz, May 24 2024: (Start)
|Sum_{k=0..binomial(n,2)} (-1)^k T(n,k)| = A010551(n).
Sum_{k=0..binomial(n,2)} (binomial(n,2)-k)*T(n,k) = A259459(n-2) for n>=2. (End)

Extensions

Edited by Alois P. Heinz, May 24 2024

A193439 exp( Sum_{n>=1} a(n-1)*x^n/n!^3 ) = Sum_{n>=0} a(n)/n!^3.

Original entry on oeis.org

1, 1, 5, 68, 1936, 99336, 8326912, 1063584640, 196475565312, 50403792222720, 17382740425346304, 7847087503671023616, 4535069738055660564480, 3292828639234241171484672, 2955617286961757422869504000, 3233957295970672142211481337856
Offset: 0

Views

Author

Paul D. Hanna, Jul 25 2011

Keywords

Comments

Compare to: exp(Sum_{n>=1} A006472(n)*x^n/n!^2) = Sum_{n>=0} A006472(n+1)/n!^2 where A006472(n) = n!*(n-1)!/2^(n-1).

Examples

			E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/(n!)^^3 starts as
A(x) = 1 + x + 5*x^2/2!^3 + 68*x^3/3!^3 + 1936*x^4/4!^3 + 99336*x^5/5!^3 + 8326912*x^6/6!^3 + 1063584640*x^7/7!^3 + 196475565312*x^8/8!^3 + 50403792222720*x^9/9!^3 + 17382740425346304*x^10/10!^3 + 7847087503671023616*x^11/11!^3 +...+ a(n)*x^n/n!^3 +...
where
log(A(x)) = x + x^2/2!^3 + 5*x^3/3!^3 + 68*x^4/4!^3 + 1936*x^5/5!^3 + 99336*x^6/6!^3 + 8326912*x^7/7!^3 +...+ a(n-1)*x^n/n!^3 +...
As a power series in x with reduced fractional coefficients, the e.g.f. begins
A(x) = 1 + x + 5/8*x^2 + 17/54*x^3 + 121/864*x^4 + 4139/72000*x^5 + 32527/1458000*x^6 + 1661851/200037600*x^7 + 85275853/28449792000*x^8 + 729221531/691329945600*x^9 + 2514864066167/6913299456000000*x^10 + 141910581301921/1150200196992000000*x^11 + 8201442668648113/198754594040217600000*x^12 + ...
		

Programs

  • PARI
    {a(n) = n!^3*polcoeff( exp(x+sum(m=2,n,a(m-1)*x^m/m!^3+x*O(x^n))), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=1); for(i=0, n, A = exp( intformal(1/x*intformal(1/x*intformal(A +x*O(x^n)))))); (n!)^3*polcoeff(A, n)}
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Apr 30 2019

Formula

E.g.f.: A(x) = exp( Integral 1/x * Integral 1/x * Integral A(x) dx dx dx ). - Paul D. Hanna, Apr 30 2019

A203157 (n-1)-st elementary symmetric function of the first n triangular numbers.

Original entry on oeis.org

1, 4, 27, 288, 4500, 97200, 2778300, 101606400, 4629441600, 257191200000, 17116074360000, 1344389840640000, 123067686661920000, 12988374315396480000, 1565562975516540000000, 213751531590524928000000, 32817539834507780352000000
Offset: 1

Views

Author

Clark Kimberling, Dec 29 2011

Keywords

Examples

			Let esf abbreviate "elementary symmetric function".  Then
0th esf of {1}:  1
1st esf of {1,3}:  1+3=4
2nd esf of {1,3,6} is 1*3+1*6+3*6=27
		

Crossrefs

Cf. A000217, A006472 (n-th symm. func.), A000292 (1st symm. func.).

Programs

  • Mathematica
    f[k_] := k (k + 1)/2; t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[n - 1, t[n]]
    Table[a[n], {n, 1, 22}]  (* A203157 *)

Formula

Conjecture: 2*(-n+1)*a(n) +n^3*a(n-1)=0. - R. J. Mathar, Oct 01 2016

A233005 a(n) = floor(Pt(n)/n!), where Pt(n) is product of first n positive triangular numbers (A000217).

Original entry on oeis.org

1, 1, 3, 7, 22, 78, 315, 1417, 7087, 38981, 233887, 1520268, 10641881, 79814109, 638512875, 5427359437, 48846234937, 464039231906, 4640392319062, 48724119350156, 535965312851718, 6163601097794765, 73963213173537187, 924540164669214843, 12019022140699792968
Offset: 1

Views

Author

Alex Ratushnyak, Dec 03 2013

Keywords

Examples

			a(4) = 7, because, the first four triangular numbers being 1, 3, 6, 10, their product is 180, which divided by 4! is 15/2 = 7.5.
a(5) = 22, because, the first five triangular numbers being 1, 3, 6, 10, 15, their product is 2700, which divided by 5! is 45/2 = 22.5.
		

Crossrefs

Cf. A006472 (triangular factorial, essentially equal to Pt(n)).
Cf. A067667 (Pt(n)/n! for n's of the form 2^k-1).

Programs

  • Mathematica
    With[{nn=30},Floor[#[[1]]/#[[2]]]&/@Thread[{FoldList[Times,Accumulate[ Range[ nn]]],Range[nn]!}]] (* Harvey P. Dale, Apr 02 2017 *)
  • Python
    f=t=1
    for n in range(1,33):
      t*=n*(n+1)//2
      f*=n
      print(t//f, end=', ')

Formula

a(n) = floor((n+1)!/2^n). - Yifan Xie, Mar 05 2023
Previous Showing 41-50 of 61 results. Next