cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 61 results. Next

A242549 T(n,k)=Number of length n+3 0..k arrays with no four elements in a row with pattern aabb (possibly a=b) and new values 0..k introduced in 0..k order.

Original entry on oeis.org

6, 12, 9, 13, 32, 15, 13, 42, 88, 25, 13, 43, 150, 242, 40, 13, 43, 165, 554, 660, 64, 13, 43, 166, 690, 2072, 1800, 104, 13, 43, 166, 711, 3050, 7808, 4920, 169, 13, 43, 166, 712, 3311, 13988, 29536, 13448, 273, 13, 43, 166, 712, 3339, 16512, 65588, 111878, 36736
Offset: 1

Views

Author

R. H. Hardin, May 17 2014

Keywords

Comments

Table starts
...6.....12......13......13.......13.......13.......13.......13.......13
...9.....32......42......43.......43.......43.......43.......43.......43
..15.....88.....150.....165......166......166......166......166......166
..25....242.....554.....690......711......712......712......712......712
..40....660....2072....3050.....3311.....3339.....3340.....3340.....3340
..64...1800....7808...13988....16512....16968....17004....17005....17005
.104...4920...29536...65588....86671....92360....93103....93148....93149
.169..13448..111878..311431...471698...532175...543773...544920...544975
.273..36736..423969.1489435..2631790..3210136..3362689..3384566..3386262
.441.100352.1607058.7152787.14930915.20066475.21854355.22202698.22241481

Examples

			Some solutions for n=4 k=4
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....0....0....1....1....1....1....0....1....1....0....1....1....1....0
..2....2....1....1....2....1....1....0....1....2....2....1....2....0....0....1
..1....1....2....0....0....1....2....2....2....3....1....2....3....0....1....2
..0....3....0....2....2....2....1....1....1....4....3....3....0....2....1....3
..1....2....0....3....2....0....1....2....1....4....3....3....0....1....0....1
..2....0....0....1....2....0....3....0....1....4....1....0....0....3....2....2
		

Crossrefs

Column 1 is A006498(n+4)

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +a(n-3) +a(n-4)
k=2: a(n) = 2*a(n-1) +4*a(n-3) +4*a(n-4)
k=3: [order 8]
k=4: [order 12]
k=5: [order 16]
k=6: [order 20]
k=7: [order 24]

A031923 Let r and s be consecutive Fibonacci numbers. Sequence is r^4, r^3 s, r^2 s^2, and r s^3.

Original entry on oeis.org

1, 2, 4, 8, 16, 24, 36, 54, 81, 135, 225, 375, 625, 1000, 1600, 2560, 4096, 6656, 10816, 17576, 28561, 46137, 74529, 120393, 194481, 314874, 509796, 825384, 1336336, 2161720, 3496900, 5656750, 9150625, 14807375, 23961025, 38773295, 62742241, 101515536
Offset: 1

Views

Author

Keywords

Comments

Two consecutive Fibonacci numbers are coprime. This sequence satisfies a 14th-order linear difference equation. Note that it is the fourth sequence in the sequences that begin with the Fibonacci numbers, A006498, and A006500. Subsequent sequences will have orders 22, 32, and 44. - T. D. Noe, Mar 05 2012
Also the number of subsets of the set {1,2,...,n-1} which do not contain two elements whose difference is 4. - David Nacin, Mar 07 2012

Examples

			Since F_5 = 5 and F_6 = 8 are consecutive Fibonacci numbers, 8^4 = 4096, 8^3*5 = 2560, 8^2*5^2 = 1600, 8*5^3 = 1000, and 5^4 = 625 are in the sequence.
The number 3^3*8 = 216 is not in the sequence since 3 and 8 are not consecutive.
If n = 6 then this gives the number of subsets of {1,...,5} not containing both 1 and 5. There are 2^3 subsets containing 1 and 5, giving us 2^5 - 2^3 = 24. Thus a(5) = 24. - _David Nacin_, Mar 07 2012
		

Crossrefs

Programs

  • Maple
    A031923 := proc(n)
        local n0,i,r,s,m ;
        n0 := n-1 ;
        i := floor(n0/4) ;
        r := combinat[fibonacci](i+2) ;
        s := combinat[fibonacci](i+3) ;
        m := modp(n0,4) ;
        r^(4-m)*s^m ;
    end proc:
    seq(A031923(n),n=1..50) ; # R. J. Mathar, Jan 23 2022
  • Mathematica
    f = Fibonacci[Range[12]]; m = Most[f]; r = Rest[f]; Union[m^4, m^3 r, m^2 r^2, m r^3] (* T. D. Noe, Mar 05 2012 *)
    LinearRecurrence[{1, 1, 0, -2, 2, 2, 0, 2, -2, -2, 0, 1, -1, -1}, {1, 2, 4, 8, 16, 24, 36, 54, 81, 135, 225, 375, 625, 1000}, 40] (* T. D. Noe, Mar 05 2012 *)
    Table[Fibonacci[Floor[n/4] + 3]^Mod[n, 4]*Fibonacci[Floor[n/4] + 2]^(4 - Mod[n, 4]), {n, 0, 40}] (* David Nacin, Mar 07 2012 *)
    cfn[{a_,b_}]:={a^4,a^3 b,a^2 b^2,a b^3}; Flatten[cfn/@Partition[ Fibonacci[ Range[20]],2,1]]//Union (* Harvey P. Dale, Feb 03 2019 *)
  • PARI
    for(m=2,10,r=fibonacci(m);s=fibonacci(m+1);print(r^4," ",r^3*s," ",r^2*s^2," ",r*s^3)) \\ Michael B. Porter, Mar 04 2012
    
  • Python
    def a(n, adict={0:0, 1:0, 2:0, 3:0, 4:0, 5:4, 6:15, 7:37, 8:87, 9:200}):
        if n in adict:
            return adict[n]
        adict[n]=3*a(n-1)-2*a(n-2)+2*a(n-3)-4*a(n-4)+2*a(n-5)-2*a(n-6)-4*a(n-7)-a(n-8)+a(n-9)+2*a(n-10)
        return adict[n] # David Nacin, Mar 07 2012

Formula

a(n) = F(floor((n-1)/4) + 3)^(n-1 mod 4)*F(floor((n-1)/4) + 2)^(4 - (n-1 mod 4)) where F(n) is the n-th Fibonacci number. - David Nacin, Mar 07 2012
a(n) = a(n-1) + a(n-2) - 2*a(n-4) + 2*a(n-5) + 2*a(n-6) + 2*a(n-8) - 2*a(n-9) - 2*a(n-10) + a(n-12) - a(n-13) - a(n-14). - David Nacin, Mar 07 2012
G.f.: x*(2 + 2*x + 2*x^2 + 4*x^3 + 4*x^4 - 2*x^6 - 1*x^7 - 4*x^8 - 3*x^9 - x^10 - x^11 - 2*x^12 - x^13)/((1 - x)*(1 + x)*(1 + x^2)*(1 - x - x^2)*(1 + 3*x^4 + x^8)). - David Nacin, Mar 08 2012
a(4*k-3) = F(k+1)^4, a(4*k-2) = F(k+1)^3*F(k+2), a(4*k-1) = F(k+1)^2*F(k+2)^2, a(4*k) = F(k+1)*F(k+2)^3, k >= 1, where F = A000045. - Jianing Song, Feb 06 2019
a(4n+1)= A056571(n+2). a(4n+3)=A197424(n). - R. J. Mathar, Jan 23 2022

Extensions

a(19) changed from 10416 to 10816 by David Nacin, Mar 04 2012

A074677 a(n) = Sum_{i = 0..floor(n/2)} (-1)^(i + floor(n/2)) F(2*i + e), where F = A000045 (Fibonacci numbers) and e = (1-(-1)^n)/2.

Original entry on oeis.org

0, 1, 1, 1, 2, 4, 6, 9, 15, 25, 40, 64, 104, 169, 273, 441, 714, 1156, 1870, 3025, 4895, 7921, 12816, 20736, 33552, 54289, 87841, 142129, 229970, 372100, 602070, 974169, 1576239, 2550409, 4126648, 6677056, 10803704, 17480761, 28284465, 45765225, 74049690
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Aug 30 2002

Keywords

Comments

Essentially the same as A006498 (g.f. 1/(1-x-x^3-x^4)).
a(n) is the convolution of F(n) with the sequence (1,0,-1,0,1,0,-1,0,...), A056594.

Crossrefs

Programs

  • Haskell
    a074677 n = a074677_list !! (n-1)
    a074677_list = 0 : 1 : 1 : 1 : zipWith (+) a074677_list
       (zipWith (+) (tail a074677_list) (drop 3 a074677_list))
    -- Reinhard Zumkeller, Dec 28 2011
    
  • Magma
    [&+[(-1)^(i+Floor(n/2))*Fibonacci(2*i+(1-(-1)^n) div 2): i in [0..Floor(n/2)]]: n in [0..50]]; // Bruno Berselli, Mar 15 2016
    
  • Mathematica
    CoefficientList[Series[x/(1 - x - x^3 - x^4), {x, 0, 40}], x]
  • PARI
    concat(0, Vec(x/((1+x^2)*(1-x-x^2)) + O(x^50))) \\ Colin Barker, Mar 15 2016
  • Sage
    [sum((-1)^(i+floor(n/2))*fibonacci(2*i+(1-(-1)^n)/2) for i in (0..floor(n/2))) for n in [0..50]]; # Bruno Berselli, Mar 15 2016
    

Formula

a(n) = a(n-1) + a(n-3) + a(n-4) for n>3, a(0)=0, a(1)=1, a(2)=1, a(3)=1.
G.f.: x/(1 - x - x^3 - x^4).
a(n) = Fibonacci(ceiling(n/2))*Fibonacci(floor(n/2+1)). - Alois P. Heinz, Jan 15 2024

A089928 a(n) = 2*a(n-1) + 2*a(n-3) + a(n-4), with a(0)=1, a(1)=2, a(3)=4, a(4)=10.

Original entry on oeis.org

1, 2, 4, 10, 25, 60, 144, 348, 841, 2030, 4900, 11830, 28561, 68952, 166464, 401880, 970225, 2342330, 5654884, 13652098, 32959081, 79570260, 192099600, 463769460, 1119638521, 2703046502, 6525731524, 15754509550, 38034750625, 91824010800
Offset: 0

Views

Author

Paul Barry, Nov 15 2003

Keywords

Comments

a(n) is the number of tilings of an n-board (a board of size n X 1) using white squares, black squares, and white (1,1)-fences. A (1,1)-fence is a tile composed of two squares separated by a gap of width 1. - Michael A. Allen, Mar 12 2021
a(n) is the number of tilings of an n-board using white squares, black squares, white trominoes, black trominoes, and white tetrominoes. - Michael A. Allen, Mar 12 2021

Crossrefs

Programs

  • Magma
    [(Evaluate(DicksonFirst(n+2,-1), 2) + 2*(-1)^Binomial(n,2))/8: n in [0..40]]; // G. C. Greubel, Aug 18 2022
    
  • Mathematica
    CoefficientList[Series[1/(1-2x-2x^3-x^4),{x,0,30}],x] (* Michael A. Allen, Mar 12 2021 *)
    LinearRecurrence[{2,0,2,1}, {1,2,4,10}, 41] (* G. C. Greubel, Aug 18 2022 *)
    nxt[{a_,b_,c_,d_}]:={b,c,d,2d+2b+a}; NestList[nxt,{1,2,4,10},30][[;;,1]] (* Harvey P. Dale, Jul 18 2024 *)
  • SageMath
    [(lucas_number2(n+2,2,-1) +2*(-1)^binomial(n,2))/8 for n in (0..40)] # G. C. Greubel, Aug 18 2022

Formula

a(n) = ( (1+sqrt(2))^(n+2) + (1-sqrt(2))^(n+2) + 2*(-1)^floor(n/2) )/8.
a(n) = (-i)^n*Sum_{k=0..floor(n/2)} U(n-2*k, i) with i^2 = -1.
a(n) + a(n+2) = A000129(n+3). - Alex Ratushnyak, Aug 06 2012
G.f.: 1/ ( (1+2*x)*(1-2*x-x^2) ). - R. J. Mathar, Apr 26 2013
4*a(n) = A057077(n) + A001333(n+2). - R. J. Mathar, Apr 26 2013
a(2*n) = (A000129(n+1))^2 = A079291(n+1). - Michael A. Allen, Mar 12 2021
a(2*n+1) = A000129(n+1)*A000129(n+2) = A114620(n+1). - Michael A. Allen, Mar 12 2021

Extensions

Formula corrected by Max Alekseyev, Aug 22 2013

A115008 a(n) = a(n-1) + a(n-3) + a(n-4).

Original entry on oeis.org

1, 0, 2, 4, 5, 7, 13, 22, 34, 54, 89, 145, 233, 376, 610, 988, 1597, 2583, 4181, 6766, 10946, 17710, 28657, 46369, 75025, 121392, 196418, 317812, 514229, 832039, 1346269, 2178310, 3524578, 5702886, 9227465, 14930353, 24157817, 39088168
Offset: 0

Views

Author

Creighton Dement, Feb 23 2006

Keywords

Comments

a(n+2) - a(n+1) - a(n) gives match to A000034, apart from signs.

Crossrefs

Programs

  • Magma
    A115008:= func< n | Fibonacci(n+1) - (n mod 2) + 2*0^((n+1) mod 4) >;
    [A115008(n): n in [0..50]]; // G. C. Greubel, Aug 24 2025
    
  • Mathematica
    Table[Fibonacci[n+1] -I^(n-1)*Mod[n,2], {n,0,50}] (* G. C. Greubel, Aug 24 2025 *)
  • SageMath
    def A115008(n): return fibonacci(n+1) -i**(n-1)*(n%2)
    print([A115008(n) for n in range(51)]) # G. C. Greubel, Aug 24 2025

Formula

a(2*n) = A000045(2*n+1) = A001519(n).
G.f.: (1-x+2*x^2+x^3)/((1+x^2)*(1-x-x^2)).
a(2*n+1) = (-1)^(n+1) + A001906(n+1) (compare with a similar property for A116697) - Creighton Dement, Mar 31 2006
From G. C. Greubel, Aug 24 2025: (Start)
a(n) = A000045(n+1) - i^(n-1)*(n mod 2).
E.g.f.: exp(x/2)*(cosh(p*x) + (1/(2*p))*sinh(p*x)) - sin(x), where 2*p = sqrt(5). (End)

A116697 a(n) = -a(n-1) - a(n-3) + a(n-4).

Original entry on oeis.org

1, 1, -2, 2, -2, 5, -9, 13, -20, 34, -56, 89, -143, 233, -378, 610, -986, 1597, -2585, 4181, -6764, 10946, -17712, 28657, -46367, 75025, -121394, 196418, -317810, 514229, -832041, 1346269, -2178308, 3524578, -5702888
Offset: 0

Views

Author

Creighton Dement, Feb 23 2006

Keywords

Crossrefs

Cf. A186679 (first differences).

Programs

  • Haskell
    a116697 n = a116697_list !! n
    a116697_list = [1,1,-2,2]
                   ++ (zipWith (-) a116697_list
                                   $ zipWith (+) (tail a116697_list)
                                                 (drop 3 a116697_list))
    a128535_list = 0 : (map negate $ map a116697 [0,2..])
    a001519_list = 1 : map a116697 [1,3..]
    a186679_list = zipWith (-) (tail a116697_list) a116697_list
    a128533_list = map a186679 [0,2..]
    a081714_list = 0 : (map negate $ map a186679 [1,3..])
    a075193_list = 1 : -3 : (zipWith (+) a186679_list $ drop 2 a186679_list)
    -- Reinhard Zumkeller, Feb 25 2011
    
  • Magma
    A116697:= func< n | (-1)^Floor((n+1)/2)*(1+(-1)^n)/2 -(-1)^n*Fibonacci(n) >;
    [A116697(n): n in [0..50]]; // G. C. Greubel, Jun 08 2025
    
  • Mathematica
    LinearRecurrence[{-1,0,-1,1},{1,1,-2,2},40] (* Harvey P. Dale, Nov 04 2011 *)
  • SageMath
    def A116697(n): return (-1)^(n//2)*((n+1)%2) - (-1)^n*fibonacci(n)
    print([A116697(n) for n in range(51)]) # G. C. Greubel, Jun 08 2025

Formula

G.f.: (1 + 2*x - x^2 + x^3)/((1 + x^2)*(1 + x - x^2)).
a(2*n+1) = A000045(2*n+1) = A001519(n).
a(2*n) = - A128535(n+1). - Reinhard Zumkeller, Feb 25 2011
a(n) = A056594(n) - (-1)^n*A000045(n). - Bruno Berselli, Feb 26 2011
E.g.f.: cos(x) + (2/sqrt(5))*exp(-x/2)*sinh(sqrt(5)*x/2). - G. C. Greubel, Jun 08 2025

A263424 T(n,k)=Number of nXk arrays of permutations of 0..n*k-1 with each element moved a city block distance of 0 or 2.

Original entry on oeis.org

1, 1, 1, 2, 4, 2, 4, 36, 36, 4, 6, 196, 1272, 196, 6, 9, 961, 26244, 26244, 961, 9, 15, 5329, 532620, 1993744, 532620, 5329, 15, 25, 29584, 11751184, 141086884, 141086884, 11751184, 29584, 25, 40, 160000, 256052940, 10808097444, 34502512032
Offset: 1

Views

Author

R. H. Hardin, Oct 17 2015

Keywords

Comments

Table starts
..1......1..........2............4.............6.............9...............15
..1......4.........36..........196...........961..........5329............29584
..2.....36.......1272........26244........532620......11751184........256052940
..4....196......26244......1993744.....141086884...10808097444.....831331827076
..6....961.....532620....141086884...34502512032.9414955824400.2581177525941432
..9...5329...11751184..10808097444.9414955824400
.15..29584..256052940.831331827076
.25.160000.5521233025
.40.868624
.64

Examples

			Some solutions for n=3 k=4
..2..9..0..1....8..9..7..6....0..4..7..6....8..4..0..3....5..6.10.11
..4..7.11.10....1..5.11..2....9..2..1.10....1..5.11..7....1..0..4..7
..5..6..8..3....0..4.10..3....5.11..8..3...10..9..2..6....8..9..2..3
		

Crossrefs

Column 1 is A006498.

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +a(n-3) +a(n-4)
k=2: [order 15]
k=3: [order 64]

A208742 Number of subsets of the set {1,2,...,n} which do not contain two elements whose difference is 5.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 48, 72, 108, 162, 243, 405, 675, 1125, 1875, 3125, 5000, 8000, 12800, 20480, 32768, 53248, 86528, 140608, 228488, 371293, 599781, 968877, 1565109, 2528253, 4084101, 6612354, 10705716, 17333064, 28063056, 45435424, 73498480, 118894600
Offset: 0

Views

Author

David Nacin, Mar 01 2012

Keywords

Examples

			If n=6 then we must count all subsets not containing both 1 and 6.  There are 2^4 subsets containing 1 and 6, giving us 2^6 - 2^4 = 48.  Thus a(6) = 48.
		

References

  • M. El-Mikkawy, T. Sogabe, A new family of k-Fibonacci numbers, Appl. Math. Comput. 215 (2010) 4456-4461 doi:10.1016/j.amc.2009.12.069, Table 1 k=5.

Crossrefs

Programs

  • Mathematica
    Table[Fibonacci[Floor[n/5] + 3]^Mod[n, 5] * Fibonacci[Floor[n/5] + 2]^(5 - Mod[n, 5]), {n, 1, 40}]
    LinearRecurrence[{1, 1, 0, 0, -3, 3, 3, 0, 0, 6, -6, -6, 0, 0, 3, -3, -3, 0, 0, -1, 1, 1}, {2, 4, 8, 16, 32, 48, 72, 108, 162, 243, 405, 675, 1125, 1875, 3125, 5000, 8000, 12800, 20480, 32768, 53248, 86528, 140608, 228488, 371293, 599781, 968877}, 80]
  • PARI
    a(n)=fibonacci(n\5+3)^(n%5)*fibonacci(n\5+2)^(5-n%5) \\ Charles R Greathouse IV, Mar 05 2012

Formula

a(n) = F(floor(n/5) + 3)^(n mod 5)*F(floor(n/5) + 2)^(5 - (n mod 5)) where F(n) is the n-th Fibonacci number.
a(n) = a(n-1) + a(n-2) - 3*a(n-5) + 3*a(n-6) + 3*a(n-7) + 6*a(n-10) - 6*a(n-11) - 6*a(n-12) + 3*a(n-15) - 3*a(n-16) - 3*a(n-17) - a(n-20) + a(n-21) + a(n-22).
G.f.: 1-x*(x^21 +2*x^20 +x^19 +x^18 +x^17 -2*x^16 -6*x^15 -4*x^14 -3*x^13 -3*x^12 -9*x^11 -12*x^10 -3*x^9 -6*x^8 -6*x^7 -2*x^6 +6*x^5 +8*x^4 +4*x^3 +2*x^2 +2*x +2) / ((x^2 +x -1) * (x^10 -4*x^5 -1) * (x^10 +x^5 -1)). - Colin Barker, Jun 02 2013

Extensions

a(0)=1 prepended by Alois P. Heinz, Sep 17 2024

A209398 Number of subsets of {1,...,n} containing two elements whose difference is 2.

Original entry on oeis.org

0, 0, 0, 2, 7, 17, 39, 88, 192, 408, 855, 1775, 3655, 7478, 15228, 30898, 62511, 126177, 254223, 511472, 1027840, 2063600, 4140015, 8300767, 16635087, 33324462, 66736764, 133615658, 267461287, 535294673, 1071191415, 2143357000, 4288290240, 8579130888
Offset: 0

Views

Author

David Nacin, Mar 07 2012

Keywords

Comments

Also, the number of bitstrings of length n containing either 101 or 111.

Examples

			For n=3 the subsets containing 1 and 3 are {1,3} and {1,2,3} so a(3)=2.
		

Crossrefs

Programs

  • Magma
    [2^n - Fibonacci(Floor(n/2) + 2)*Fibonacci(Floor((n + 1)/2) + 2): n in [0..30]]; // G. C. Greubel, Jan 03 2018
  • Mathematica
    Table[2^n -Fibonacci[Floor[n/2] + 2]*Fibonacci[Floor[(n + 1)/2] + 2], {n, 0,30}]
    LinearRecurrence[{3, -2, 1, -1, -2}, {0, 0, 0, 2, 7}, 40]
    CoefficientList[ Series[x^3 (x +2)/(2x^5 +x^4 -x^3 +2x^2 -3x +1), {x, 0, 33}], x] (* Robert G. Wilson v, Jan 03 2018 *)
    a[n_] := Floor[ N[(2^-n ((50 - 14 Sqrt[5]) (1 - Sqrt[5])^n + ((-1 + 2I) (-2I)^n - (1 + 2I) (2I)^n + 5 4^n) (15 + 11 Sqrt[5]) - 2 (1 + Sqrt[5])^n (85 + 37 Sqrt[5])))/(150 + 110 Sqrt[5])]]; Array[a, 33] (* Robert G. Wilson v, Jan 03 2018 *)
  • PARI
    x='x+O('x^30); concat([0,0,0], Vec(x^3*(2+x)/((1-2*x)*(1+x^2)*(1-x-x^2)))) \\ G. C. Greubel, Jan 03 2018
    
  • Python
    #Through Recurrence
    def a(n, adict={0:0, 1:0, 2:0, 3:2, 4:7}):
     if n in adict:
      return adict[n]
     adict[n]=3*a(n-1)-2*a(n-2)+a(n-3)-a(n-4)-2*a(n-5)
     return adict[n]
    
  • Python
    #Returns the actual list of valid subsets
    def contains101(n):
     patterns=list()
     for start in range (1,n-1):
      s=set()
      for i in range(3):
       if (1,0,1)[i]:
        s.add(start+i)
      patterns.append(s)
     s=list()
     for i in range(2,n+1):
      for temptuple in comb(range(1,n+1),i):
       tempset=set(temptuple)
       for sub in patterns:
        if sub <= tempset:
         s.append(tempset)
         break
     return s
    #Counts all such subsets using the preceding function
    def countcontains101(n):
     return len(contains101(n))
    

Formula

a(n) = 3*a(n-1) - 2*a(n-2) + a(n-3) - a(n-4) - 2*a(n-5), a(0)=0, a(1)=0, a(2)=0, a(3)=2, a(4)=7.
a(n) = 2^n - F(2+floor(n/2))*F(floor(2+(n+1)/2)), where F(n) are the Fibonacci numbers.
a(n) = 2^n - A006498(n+2).
G.f.: (2*x^3 + 1*x^4)/(1 - 3*x + 2*x^2 - x^3 + x^4 + 2*x^5) = x^3*(2 + x) / ((1 - 2*x)*(1 + x^2)*(1 - x - x^2)).
E.g.f.: (2*cos(x) + 5*cosh(2*x) + sin(x) + 5*sinh(2*x) - exp(x/2)*(7*cosh(sqrt(5)*x/2) + 3*sqrt(5)*sinh(sqrt(5)*x/2)))/5. - Stefano Spezia, Mar 12 2024

A209434 Table T(n,m), read by antidiagonals, is the number of subsets of {1,...,n} which do not contain two elements whose difference is m+1.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 5, 4, 2, 1, 8, 6, 4, 2, 1, 13, 9, 8, 4, 2, 1, 21, 15, 12, 8, 4, 2, 1, 34, 25, 18, 16, 8, 4, 2, 1, 55, 40, 27, 24, 16, 8, 4, 2, 1, 89, 64, 45, 36, 32, 16, 8, 4, 2, 1, 144, 104, 75, 54, 48, 32, 16, 8, 4, 2, 1, 233, 169, 125, 81, 72, 64, 32
Offset: 0

Views

Author

David Nacin, Mar 09 2012

Keywords

Comments

1st column is the Fibonacci sequence.

Examples

			Table begins:
1,   1,   1,   1,   1,   1,   1,   1,   1,   1,    1,    ...
2,   2,   2,   2,   2,   2,   2,   2,   2,   2,    2,    ...
3,   4,   4,   4,   4,   4,   4,   4,   4,   4,    4,    ...
5,   6,   8,   8,   8,   8,   8,   8,   8,   8,    8,    ...
8,   9,   12,  16,  16,  16,  16,  16,  16,  16,   16,   ...
13,  15,  18,  24,  32,  32,  32,  32,  32,  32,   32,   ...
21,  25,  27,  36,  48,  64,  64,  64,  64,  64,   64,   ...
34,  40,  45,  54,  72,  96,  128, 128, 128, 128,  128,  ...
55,  64,  75,  81,  108, 144, 192, 256, 256, 256,  256,  ...
89,  104, 125, 135, 162, 216, 288, 384, 512, 512,  512,  ...
144, 169, 200, 225, 243, 324, 432, 576, 768, 1024, 1024, ...
............................................................
		

References

  • M. El-Mikkawy, T. Sogabe, A new family of k-Fibonacci numbers, Appl. Math. Comput. 215 (2010) 4456-4461 doi:10.1016/j.amc.2009.12.069, Table 1.

Crossrefs

Programs

  • Mathematica
    a[n_, m_] := Product[Fibonacci[Floor[(n + i)/(m + 1) + 2]], {i, 0, m}]; Flatten[Table[a[j - i, i], {j, 0, 30}, {i, 0, j}]]

Formula

T(n,m) = Product_{i=0 to m} F(floor[(n + i)/(m + 1) + 2]) where F(n) is the n-th Fibonacci number.
Previous Showing 31-40 of 61 results. Next