A242549 T(n,k)=Number of length n+3 0..k arrays with no four elements in a row with pattern aabb (possibly a=b) and new values 0..k introduced in 0..k order.
6, 12, 9, 13, 32, 15, 13, 42, 88, 25, 13, 43, 150, 242, 40, 13, 43, 165, 554, 660, 64, 13, 43, 166, 690, 2072, 1800, 104, 13, 43, 166, 711, 3050, 7808, 4920, 169, 13, 43, 166, 712, 3311, 13988, 29536, 13448, 273, 13, 43, 166, 712, 3339, 16512, 65588, 111878, 36736
Offset: 1
Examples
Some solutions for n=4 k=4 ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0 ..1....1....0....0....1....1....1....1....0....1....1....0....1....1....1....0 ..2....2....1....1....2....1....1....0....1....2....2....1....2....0....0....1 ..1....1....2....0....0....1....2....2....2....3....1....2....3....0....1....2 ..0....3....0....2....2....2....1....1....1....4....3....3....0....2....1....3 ..1....2....0....3....2....0....1....2....1....4....3....3....0....1....0....1 ..2....0....0....1....2....0....3....0....1....4....1....0....0....3....2....2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..9999
Crossrefs
Column 1 is A006498(n+4)
Formula
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-3) +a(n-4)
k=2: a(n) = 2*a(n-1) +4*a(n-3) +4*a(n-4)
k=3: [order 8]
k=4: [order 12]
k=5: [order 16]
k=6: [order 20]
k=7: [order 24]
Comments