cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 334 results. Next

A160348 Minimal recursive sequence such that if a(n) > 0 then always a(n) > a((f(2n+1)-1)/2), where f is defined by f(2n+1) = (3n+2)/A006519(3n+2) for n>=1, that is f(m) = A075677(2*m-1) for odd m.

Original entry on oeis.org

0, 2, 1, 6, 7, 5, 3, 11, 4, 13, 14, 10, 15, 52, 12, 50, 53, 9, 54, 59, 51, 62, 63, 49, 60, 65, 8, 68, 69, 58, 16, 75, 61, 56, 76, 48, 77, 80, 64, 84, 85, 67, 78, 88, 57, 44
Offset: 0

Views

Author

Vladimir Shevelev, May 10 2009; corrected May 13 2009, May 19 2009

Keywords

Comments

If the (3x+1)-Collatz conjecture is true, then this sequence is a permutation of the nonnegative integers.

Examples

			a(0)=0. Let m=3. Then f(m)=5, f^2(m)=1. The corresponding numbers n=(m-1)/2 are 1,2,0. By the condition, a(1) > a(2) > a(0)=0. Therefore let a(2)=1, a(1)=2. Furthermore, consider m=7. Then f(m)=11, f^2(m)=17, f^3(m)=13, f^4(m)=5. The corresponding numbers n=(m-1)/2 are 3,5,8,6,2 and, by the condition, a(3) > a(5) > a(8) > a(6) > a(2)=1. Therefore set a(6)=3 (the minimal value which yet did not appear), a(8)=4, a(5)=5, a(3)=6, etc.
		

Crossrefs

Extensions

Name edited by Michel Marcus, Feb 01 2021

A162588 G.f.: A(x) = exp( 2*Sum_{n>=1} 2^n/A006519(n) * x^n/n ), where A006519(n) = highest power of 2 dividing n.

Original entry on oeis.org

1, 4, 10, 24, 52, 112, 240, 512, 1060, 2192, 4552, 9440, 19408, 39872, 81984, 168448, 342632, 696736, 1421200, 2897856, 5891872, 11976064, 24361856, 49543168, 100329952, 203147136, 411939264, 835168512, 1690383744, 3420860928
Offset: 0

Views

Author

Paul D. Hanna, Jul 07 2009

Keywords

Examples

			G.f.: A(x) = 1 + 4*x + 10*x^2 + 24*x^3 + 52*x^4 + 112*x^5 + 240*x^6 + ...
log(A(x))/2 = 2*x + 2*x^2/2 + 8*x^3/3 + 4*x^4/4 + 32*x^5/5 + 32*x^6/6 + 128*x^7/7 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 150; a[n_]:= SeriesCoefficient[Series[Exp[Sum[2^(k + 1 - IntegerExponent[k, 2])*q^k/k, {k, 1, nmax}]], {q, 0, nmax}], n]; Table[a[n], {n,0,50}] (* G. C. Greubel, Jul 04 2018 *)
  • PARI
    {a(n)=local(L=2*sum(m=1,n,2^(m-valuation(m,2))*x^m/m)+x*O(x^n));polcoeff(exp(L),n)}

A191769 G.f. A(x) satisfies: A(x) = 1 + Sum_{n>=1} x^n*A(x)^A006519(n) where A006519(n) = highest power of 2 dividing n.

Original entry on oeis.org

1, 1, 2, 5, 12, 33, 92, 267, 792, 2403, 7414, 23199, 73454, 234901, 757654, 2461877, 8051284, 26480681, 87534184, 290652931, 968992200, 3242229475, 10884245838, 36648566551, 123739675390, 418848744517, 1421072269234, 4831811596381
Offset: 0

Views

Author

Paul D. Hanna, Jun 16 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 12*x^4 + 33*x^5 + 92*x^6 + 267*x^7 +...
The g.f. satisfies the following relations:
A(x) = 1 + x*A(x) + x^2*A(x)^2 + x^3*A(x) + x^4*A(x)^4 + x^5*A(x) + x^6*A(x)^2 + x^7*A(x) + x^8*A(x)^8 +...+ x^n*A(x)^A006519(n) +...
A(x) = 1 + x*A(x)/(1-x^2) + x^2*A(x)^2/(1-x^4) + x^4*A(x)^4/(1-x^8) + x^8*A(x)^8/(1-x^16) + x^16*A(x)^16/(1-x^32) +...
		

Crossrefs

Cf. A191768.

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^m*(A+x*O(x^n))^(2^valuation(m,2))));polcoeff(A,n)}

Formula

G.f. A(x) satisfies: A(x) = 1 + Sum_{n>=0} x^(2^n)*A(x)^(2^n)/(1 - x^(2^(n+1))).

A233808 Autosequence preceding A198631(n)/A006519(n+1). Numerators.

Original entry on oeis.org

0, 0, 1, 3, 3, 5, 5, 7, 7, -3, -3, 121, 121, -1261, -1261, 20583, 20583, -888403, -888403, 24729925, 24729925, -862992399, -862992399, 36913939769, 36913939769, -1899853421885, -1899853421885
Offset: 0

Views

Author

Paul Curtz, Dec 16 2013

Keywords

Comments

The fractions are g(n)=0, 0, 1, 3/2, 3/2, 5/4, 5/4, 7/4, 7/4, -3/8, -3/8, 121/8, 121/8, -1261/8, -1261/8, 20583/8, 20583/8, -888403/16, -888403/16,... . The denominators are 1, 1, followed by A053644(n+1).
g(n+2) - g(n+1) = A198631(n)/A006519(n+1).
The corresponding fractions to g(n) are f(n) in A165142(n).
g(n) differences table:
0, 0, 1, 3/2, 3/2, 5/4,
0, 1, 1/2, 0, -1/4, 0,
1, -1/2, -1/2, -1/4, 1/4, 1/2, Euler twin numbers (new),
-3/2, 0, 1/4, 1/2, 1/4, -1,
3/2, 1/4, 1/4, -1/4, -5/4, -5/8,
-5/4, 0, -1/2, -1, 5/8, 13/2, etc.
Like A198631(n)/A006519(n+1),g(n) is an autosequence of the second kind.
If we proceed, here for Euler polynomials, like in A233565 for Bernoulli polynomials, we obtain
1) A133138(n)/A007395(n) (unreduced form) or
2) A233508(n)/A232628(n) (reduced form),the first array in A133135.
The Bernoulli's corresponding fractions to 1) are A193815(n)/(A003056(n) with 1 instead of 0).

Crossrefs

Cf. A051716/A051717, Bernoulli twin numbers.

Programs

  • Mathematica
    max = 27; p[0] = 1; p[n_] := (1 + x)*((1 + x)^(n - 1) + x^(n - 1))/2; t = Table[Coefficient[p[n], x, k], {n, 0, max + 2}, {k, 0, max + 2}]; a[n_] := (-1)^n*Inverse[t][[n, 2]] // Numerator; a[0] = 0; Table[a[n], {n, 0, max}] (* Jean-François Alcover, Jan 11 2016 *)

Formula

a(n) = 0, 0, followed by (-1)^n *A141424(n).

A349345 Sum of A109168 and its Dirichlet inverse, where A109168(n) = (n+A006519(n))/2, and A006519 is the highest power of 2 dividing n.

Original entry on oeis.org

2, 0, 0, 4, 0, 8, 0, 8, 4, 12, 0, 8, 0, 16, 12, 16, 0, 12, 0, 12, 16, 24, 0, 16, 9, 28, 12, 16, 0, 8, 0, 32, 24, 36, 24, 20, 0, 40, 28, 24, 0, 12, 0, 24, 26, 48, 0, 32, 16, 34, 36, 28, 0, 32, 36, 32, 40, 60, 0, 32, 0, 64, 36, 64, 42, 20, 0, 36, 48, 24, 0, 40, 0, 76, 46, 40, 48, 24, 0, 48, 37, 84, 0, 44, 54, 88, 60, 48
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2021

Keywords

Crossrefs

Programs

  • PARI
    up_to = 20000;
    DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(dA109168(n) = ((n+bitand(n, -n))\2); \\ From A109168
    v349344 = DirInverseCorrect(vector(up_to,n,A109168(n)));
    A349344(n) = v349344[n];
    A349345(n) = (A109168(n)+A349344(n));

Formula

a(n) = A109168(n) + A349344(n).
a(1) = 2, and for n > 1, a(n) = -Sum_{d|n, 1A109168(d) * A349344(n/d).
For all n >= 1, a(4*n) = 4*A109168(n). - Antti Karttunen, Dec 07 2021

A162583 G.f.: A(x) = exp( 6*Sum_{n>=1} A006519(n)*A038500(n) * x^n/n ).

Original entry on oeis.org

1, 6, 24, 78, 222, 570, 1356, 3030, 6432, 13074, 25608, 48558, 89502, 160854, 282624, 486534, 822174, 1365978, 2234400, 3602742, 5732202, 9008034, 13993320, 21503730, 32711460, 49287750, 73598280, 108968334, 160041750, 233262786
Offset: 0

Views

Author

Paul D. Hanna, Jul 06 2009

Keywords

Comments

A006519(n) = highest power of 2 dividing n and
A038500(n) = highest power of 3 dividing n.

Examples

			G.f.: A(x) = 1 + 6*x + 24*x^2 + 78*x^3 + 222*x^4 + 570*x^5 + 1356*x^6 + ...
log(A(x))/6 = x + 2*x^2/2 + 3*x^3/3 + 4*x^4/4 + x^5/5 + 6*x^6/6 + x^7/7 + 8*x^8/8 + 9*x^9/9 + ... + A006519(n)*A038500(n)*x^n/n + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 150; a[n_]:= SeriesCoefficient[Series[Exp[Sum[2^(IntegerExponent[k, 2] + 1)*3^(IntegerExponent[k, 3] + 1)*q^k/k, {k, 1, nmax}]], {q, 0, nmax}], n]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Jul 04 2018 *)
  • PARI
    {a(n)=local(L=sum(m=1,n,6*2^valuation(m,2)*3^valuation(m,3)*x^m/m)+x*O(x^n));polcoeff(exp(L),n)}

A162585 G.f.: A(x) = exp( Sum_{n>=1} C(2n,n)*A006519(n) * x^n/n ), where A006519(n) = highest power of 2 dividing n.

Original entry on oeis.org

1, 2, 8, 20, 114, 288, 1156, 3256, 23464, 59716, 243212, 699216, 3659988, 10265800, 42353168, 128163440, 1127515970, 2858004752, 11768578868, 34294832344, 180335471424, 513911386232, 2137413847256, 6572758142016, 41948816796852
Offset: 0

Views

Author

Paul D. Hanna, Jul 06 2009

Keywords

Comments

Compare g.f. to the g.f. of the Catalan numbers: exp( Sum_{n>=1} C(2n,n)*x^n/n ), where C(2n,n) form the central binomial coefficients (A000984).

Examples

			G.f.: A(x) = 1 + 2*x + 6*x^2 + 10*x^3 + 146*x^4 + 282*x^5 + 826*x^6 + ...
log(A(x)) = 2*x + 12*x^2/2 + 20*x^3/3 + 280*x^4/4 + 252*x^5/5 + 1848*x^6/6 + ... + C(2n,n)*A006519(n)*x^n/n + ...
		

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Exp[Sum[2^(IntegerExponent[k, 2])*Binomial[2*k, k]*q^k/k, {k,nmax+3}]], {q,0,nmax}], q]  (* G. C. Greubel, Jul 04 2018 *)
  • PARI
    {a(n)=local(L=sum(m=1,n,2^valuation(m,2)*binomial(2*m,m)*x^m/m)+x*O(x^n));polcoeff(exp(L),n)}

A162589 G.f.: A(x) = exp( Sum_{n>=1} 2^n*A006519(n) * x^n/n ), where A006519(n) = highest power of 2 dividing n.

Original entry on oeis.org

1, 2, 6, 12, 38, 76, 188, 376, 1094, 2188, 5236, 10472, 26076, 52152, 118840, 237680, 612678, 1225356, 2804420, 5608840, 13279604, 26559208, 59074504, 118149008, 277925148, 555850296, 1228260104, 2456520208, 5552652792, 11105305584
Offset: 0

Views

Author

Paul D. Hanna, Jul 07 2009

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 6*x^2 + 12*x^3 + 38*x^4 + 76*x^5 + 188*x^6 + ...
log(A(x)) = 2*x + 8*x^2/2 + 8*x^3/3 + 64*x^4/4 + 32*x^5/5 + 128*x^6/6 + 128*x^7/7 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 150; a[n_]:= SeriesCoefficient[Series[Exp[Sum[2^(k + IntegerExponent[k, 2])*q^k/k, {k, 1, nmax}]], {q,0,nmax}], n]; Table[a[n], {n,0,50}] (* G. C. Greubel, Jul 04 2018 *)
  • PARI
    {a(n)=local(L=sum(m=1,n,2^(m+valuation(m,2))*x^m/m)+x*O(x^n));polcoeff(exp(L),n)}

A174238 Inverse Moebius transform of even part of n (A006519).

Original entry on oeis.org

1, 3, 2, 7, 2, 6, 2, 15, 3, 6, 2, 14, 2, 6, 4, 31, 2, 9, 2, 14, 4, 6, 2, 30, 3, 6, 4, 14, 2, 12, 2, 63, 4, 6, 4, 21, 2, 6, 4, 30, 2, 12, 2, 14, 6, 6, 2, 62, 3, 9, 4, 14, 2, 12, 4, 30, 4, 6, 2, 28, 2, 6, 6, 127, 4, 12, 2, 14, 4, 12, 2, 45, 2, 6, 6, 14, 4, 12, 2, 62
Offset: 1

Views

Author

Ralf Stephan, Nov 27 2010

Keywords

Comments

The Dirichlet g.f. is the Dirichlet g.f. of A006519 multiplied by zeta(s). - R. J. Mathar, Feb 06 2011
Multiplicative because A006519 is. - Andrew Howroyd, Jul 27 2018

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[2^IntegerExponent[d, 2], {d, Divisors[n]}];
    Array[a, 80] (* Jean-François Alcover, Feb 16 2020, from PARI *)
    f[p_, e_] := If[p==2, 2^(e+1)-1, e+1]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 30 2020 *)
  • PARI
    a(n) = sumdiv(n, d, 2^valuation(d, 2)); \\ Michel Marcus, Mar 27 2015

Formula

a(1) = 1, a(2n) = 2a(n) + A001227(n), a(2n+1) = A000005(2n+1).
Dirichlet g.f.: zeta(s)^2*(1-2^(-s))/(1-2^(-s+1)). - Ralf Stephan, Mar 27 2015
Multiplicative with a(2^e) = 2^(e+1)-1, and a(p^e) = e+1 for p > 2. - Amiram Eldar, Sep 30 2020
Sum_{k=1..n} a(k) ~ n*(log(n)^2/(4*log(2)) + (3/4 - 1/(2*log(2)) + gamma/log(2))*log(n) - 3/4 + log(2)/24 + 1/(2*log(2)) + (3/2 - 1/log(2))*gamma + gamma^2/(2*log(2)) - sg1/log(2)), where gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). - Vaclav Kotesovec, Nov 20 2021

Extensions

Title corrected by R. J. Mathar, Feb 06 2011
Terms a(61) and beyond from Andrew Howroyd, Jul 27 2018

A237425 Denominators of A164555(n)/A027642(n) + A198631(n)/A006519(n+1).

Original entry on oeis.org

1, 1, 6, 4, 30, 2, 42, 8, 30, 2, 66, 4, 2730, 2, 6, 16, 510, 2, 798, 4, 330, 2, 138, 8, 2730, 2, 6, 4, 870, 2, 14322, 32, 510, 2, 6, 4, 1919190, 2, 6, 8, 13530, 2, 1806, 4, 690, 2, 282, 16, 46410, 2, 66, 4, 1590, 2, 798, 8
Offset: 0

Views

Author

Paul Curtz, Feb 07 2014

Keywords

Comments

An autosequence is a sequence which has its inverse binomial transform equal to the signed sequence. There are two possibilities. For the first kind, the main diagonal is 0's=A000004, the first two following diagonals being the same (generally not A000004). Integers example: A000045(n).
For the second kind, the main diagonal is the double of the following diagonal. Example: the companion to A000045(n) is A000032(n)=2, 1, 3, ... .
A000032(n)/2 is also a possibility. Here a(n) is the denominator of the sum of two autosequences of second kind involving (fractional) Euler and Bernoulli numbers. The corresponding fractional sequence is also an autosequence of the second kind: 2, 1, 1/6, -1/4, -1/30, 1/2, 1/42, -17/8, -1/30, 31/2, 5/66, -691/4, -691/2730,... . It could be divided by 2.

Crossrefs

Programs

  • Mathematica
    a[n_] := BernoulliB[n] + EulerE[n, 1]/2^IntegerExponent[n, 2]; a[0] = 2; a[1] = 1; Table[a[n] // Denominator, {n, 0, 55}] (* Jean-François Alcover, Feb 11 2014 *)

Formula

a(2n) = A002445(n). a(2n+2) = A171977(n+2).
Previous Showing 31-40 of 334 results. Next