cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 198 results. Next

A352249 Emirps that can be written as p*q+p+q where p and q are emirps.

Original entry on oeis.org

1439, 1511, 3023, 14447, 16127, 16547, 16883, 19763, 30059, 33623, 35099, 35327, 36251, 38219, 39359, 72911, 75239, 76463, 78623, 94559, 96431, 100799, 103511, 107603, 108191, 108863, 110807, 118583, 119039, 119363, 120539, 121727, 126359, 127679, 128879, 129959, 132299, 132887, 134999, 136403
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Apr 17 2022

Keywords

Examples

			a(3) = 3023 is a term because 3023 = 17*167+17+167 and 3023, 17 and 167 are emirps.
		

Crossrefs

Cf. A006567.

Programs

  • Maple
    revdigs:= proc(n) local L,i; L:= convert(n,base,10); add(L[-i]*10^(i-1),i=1..nops(L)) end proc:
    isemirp:= proc(p) local r;
       if not isprime(p) then return false fi;
       r:= revdigs(p);
       r <> p and isprime(r)
    end proc:
    E:= select(isemirp, [seq(ithprime(i),i=1..10^4)]):
    nE:= nops(E): N:= E[1]*E[-1]+E[1]+E[-1]:
    S:= {}:
    for i from 1 to nE do
      for j from i+1 to nE do
        x:= E[i]*(E[j]+1)+E[j];
        if x > N then break fi;
        if isemirp(x) then S:= S union {x} fi;
    od od:
    sort(convert(S,list));

A040104 First ten consecutive primes which are emirps.

Original entry on oeis.org

1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259
Offset: 1

Views

Author

Keywords

Comments

There are no additional such ten-consecutive primes up through the 3 millionth prime (49,979,687). - Harvey P. Dale, May 20 2014

Crossrefs

Programs

  • Mathematica
    Flatten[Select[Partition[Prime[Range[220]],10,1],And@@PrimeQ[ FromDigits/@ (Reverse/@(IntegerDigits/@#))]&]] (* Harvey P. Dale, May 20 2014 *)

Extensions

New name from Charles R Greathouse IV, Jan 13 2014

A071614 a(n) is the smallest emirp that is the first of n consecutive emirps with equal digit sum.

Original entry on oeis.org

13, 79, 15919, 197837, 3528871, 110539181, 731854429, 9819391129
Offset: 1

Views

Author

Klaus Brockhaus, May 27 2002

Keywords

Comments

a(9) > 10^11. - Donovan Johnson, Nov 07 2010

Examples

			a(3) = 15919, since 15919,15937,15973 are three consecutive emirps with digit sum 25 and this is the first occurrence of three consecutive emirps with equal digit sum.
		

Crossrefs

Extensions

a(7)-a(8) from Donovan Johnson, Nov 07 2010

A109019 Numbers whose digit reversal is different and has the same number of prime factors (with multiplicity).

Original entry on oeis.org

13, 15, 17, 26, 31, 37, 39, 49, 51, 58, 62, 71, 73, 79, 85, 93, 94, 97, 107, 113, 115, 117, 122, 123, 126, 129, 143, 147, 149, 155, 157, 158, 159, 165, 167, 169, 177, 178, 179, 183, 185, 187, 199, 203, 205, 221, 225, 226, 244, 246, 265, 270, 285, 286, 289, 290
Offset: 1

Views

Author

Jonathan Vos Post, Jun 16 2005

Keywords

Comments

Ray Chandler has coauthorship credit for this sequence.

Crossrefs

Programs

  • Mathematica
    Select[Range@1000, ! PalindromeQ@# && Differences@PrimeOmega@{#,IntegerReverse@#} == {0} &] (* Hans Rudolf Widmer, Jun 03 2022 *)

Formula

{A006567} U {A097393} U {A109023} U {A109024} U ... U {A109031} U ...

Extensions

More terms from Stefan Steinerberger, Jun 16 2007

A127746 Smallest n-digit prime whose reversal is also prime.

Original entry on oeis.org

2, 13, 107, 1009, 10007, 100049, 1000033, 10000169, 100000007, 1000000007, 10000000207, 100000000237, 1000000000091, 10000000000313, 100000000000261, 1000000000000273, 10000000000000079, 100000000000000049
Offset: 1

Views

Author

Lekraj Beedassy, Jan 28 2007

Keywords

Comments

Smallest n-digit emirp (A006567).
Largest n-digit emirp is given by A114019.
Least emirp (A006567) greater than 10^(n-1). [Jonathan Vos Post, Nov 15 2009]
Palindromes not permitted (with the exception of the first term), so for example 101 is not a term. - Harvey P. Dale, Mar 11 2017

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 10^(n - 1), id, rid}, While[ id = IntegerDigits[k]; rid = Reverse[id]; ! PrimeQ[k] || ! PrimeQ[FromDigits[rid]] || id == rid, k++ ]; k]; Table[f[n], {n, 2, 19}] (* Ray Chandler, Jan 30 2007 *)
    sndp[n_]:=Module[{np=NextPrime[10^(n+1)]},While[PalindromeQ[np] || !PrimeQ[ IntegerReverse[ np]],np= NextPrime[np]];np]; Join[{2},Array[sndp,20,0]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 11 2017 *)

Extensions

Edited and extended by Ray Chandler, Jan 30 2007

A128374 Emirps starting and ending with composite digit 9.

Original entry on oeis.org

9029, 9209, 9349, 9439, 9479, 9679, 9749, 9769, 90019, 90059, 90089, 90149, 90199, 90499, 90679, 90749, 90989, 91009, 91129, 91199, 91229, 91249, 91459, 92119, 92189, 92219, 92369, 92459, 92479, 92489, 92639, 92779, 92789, 92899, 92959
Offset: 1

Views

Author

Lekraj Beedassy, Feb 27 2007

Keywords

Crossrefs

Extensions

Corrected and extended by Ray Chandler, Feb 28 2007

A128389 Emirps with only composite digits (i.e., 4, 6, 8, 9).

Original entry on oeis.org

94889, 98849, 98999, 99989, 946949, 949649, 9446989, 9464849, 9466949, 9468869, 9468989, 9484649, 9489899, 9494689, 9496649, 9648889, 9666689, 9688649, 9689689, 9699889, 9844699, 9844889, 9846989, 9864889, 9864949, 9866669
Offset: 1

Views

Author

Lekraj Beedassy, Feb 28 2007

Keywords

Comments

Subsequence of A128374.

Crossrefs

Programs

  • Mathematica
    Select[Prime@Range[10^6], # != r[ # ] && PrimeQ[r[ # ]] && Intersection[IntegerDigits[ # ], {0, 1, 2, 3, 5, 7}] == {} &] (* Ray Chandler, Mar 06 2007 *)

Extensions

Extended by Ray Chandler, Mar 06 2007

A143260 Primes that are not emirps.

Original entry on oeis.org

2, 3, 5, 7, 11, 19, 23, 29, 41, 43, 47, 53, 59, 61, 67, 83, 89, 101, 103, 109, 127, 131, 137, 139, 151, 163, 173, 181, 191, 193, 197, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 313, 317, 331, 349, 353, 367, 373, 379, 383
Offset: 1

Views

Author

Lekraj Beedassy, Aug 02 2008

Keywords

Comments

Complement of A006567 with respect to A000040.

Programs

  • Mathematica
    Select[Prime[Range[100]],PalindromeQ[#]||!PrimeQ[IntegerReverse[#]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 29 2017 *)

A152014 Number of n-digit primes whose reversal is a different prime.

Original entry on oeis.org

0, 8, 28, 204, 1406, 9538, 70474, 535578, 4192024, 33619380, 274890230, 2294771254
Offset: 1

Views

Author

Zak Seidov, Nov 19 2008

Keywords

Comments

All terms are even.

Examples

			a(1)=0 because there are no 1-digit terms in A006567.
a(2)=8 because there are eight 2-digit terms in A006567: 13,17,31,37,71,73,79,97.
		

Crossrefs

Cf. A006567.

Programs

  • Mathematica
    Do[c = 0; p = NextPrime[10^(n - 1) - 1]; n1 = PrimePi[p]; n2 = PrimePi[NextPrime[10^n, -1]] - n1 + 1; Do[id = IntegerDigits[p]; i1 = id[[1]]; If[OddQ[i1] && i1 != 5, p1 = FromDigits[ Reverse[id]]; If[p1 != p, If[PrimeQ[p1], c++ ]]]; p = NextPrime[p], {n2}]; Print[{n, c}], {n, 1, 9}];

Extensions

a(10)-a(11) from Donovan Johnson, Nov 01 2010
a(12) from Lars Blomberg, Jun 28 2021

A152034 a(n) = largest n-digit prime p whose reversal is a prime q > p.

Original entry on oeis.org

79, 769, 9679, 98999, 995699, 9975899, 99967999, 999548999, 9999049999, 99994169999, 999989299999, 9999954799999, 99999904999999, 999999778999999, 9999999349999999, 99999994999999999, 999999971189999999, 9999999950999999999, 99999999632999999999
Offset: 2

Views

Author

Zak Seidov, Nov 20 2008

Keywords

Crossrefs

Programs

  • Maple
    revdigs:= proc(x) local L,i; L:= convert(x,base,10); add(L[-i]*10^(i-1),i=1..nops(L)) end proc:
    f:= proc(n)
      local d,a,B,r;
      for d from floor(n/2) by -1 do
         B:= (10^d-1)*(1+10^(n-d));
         for a from 10^(n-2*d)-1 to 1 by -1 do
           r:= revdigs(a);
           if r > a and isprime(B+10^d*a) and isprime(B+10^d*r) then return B+10^d*a fi
         od
      od
    end proc:
    map(f, [$2..20]); # Robert Israel, Aug 16 2016
  • Mathematica
    Do[ p = NextPrime[10^(n ), -1 ]; Do[ p1 = FromDigits[ Reverse[IntegerDigits[p]]]; If[PrimeQ[p1] && p1 > p, Print[{n, p}]; Break[]]; p = NextPrime[p, -1], {10^9}], {n, 2, 15}];

Extensions

More terms from Max Alekseyev, May 03 2011
Previous Showing 81-90 of 198 results. Next