cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 93 results. Next

A028941 Denominator of X-coordinate of n*P where P is the generator [0,0] for rational points on curve y^2+y = x^3-x.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 9, 25, 49, 16, 529, 841, 3481, 16641, 98596, 4225, 2337841, 13608721, 67387681, 264517696, 6941055969, 12925188721, 384768368209, 5677664356225, 61935294530404, 49020596163841, 16063784753682169
Offset: 1

Views

Author

Keywords

Comments

We can take P = P[1] = [x_1, y_1] = [0,0]. Then P[n] = P[1]+P[n-1] = [x_n, y_n] for n >= 2. Sequence gives denominators of the x_n. - N. J. A. Sloane, Jan 27 2022
Squares of terms in A006769 (or A006720).

References

  • G. Everest, A. J. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences: Examples and Applications, AMS Monographs, 2003
  • A. W. Knapp, Elliptic Curves, Princeton 1992, p. 77.

Crossrefs

Programs

  • Mathematica
    nxt[{a_,b_,c_,d_,e_,f_}]:={b,c,d,e,f,((c*2e)-f*b+2d^2)/a}; NestList[nxt,{1,1,1,1,4,1},30][[;;,1]] (* Harvey P. Dale, Dec 26 2024 *)
  • PARI
    - see A028940.

Formula

This sequence satisfies the quadratic recurrence relation a(n)a(n-6)=-a(n-1)a(n-5)+2a(n-2)a(n-4)+2a(n-3)^2 which is a generalized Somos-6 relation. - Graham Everest (g.everest(AT)uea.ac.uk), Dec 16 2002
P=(0, 0), 2P=(1, 0), if kP=(a, b) then (k+1)P=(a'=(b^2-a^3)/a^2, b'=-1-b*a'/a).

A056010 Number of words of length n in a simple grammar.

Original entry on oeis.org

1, 1, 3, 8, 23, 68, 207, 644, 2040, 6558, 21343, 70186, 232864, 778550, 2620459, 8872074, 30195288, 103246502, 354508628, 1221846856, 4225644866, 14659644348, 51002664023, 177909901566, 622093882290, 2180123564130, 7656055966092
Offset: 0

Views

Author

Michael Somos, Aug 01 2000

Keywords

Comments

The grammar defines a language L consisting of words from the alphabet S = {e, w, n, s}. If each letter in S is regarded as an integer lattice step, e = (1,0), w = (-1,0), n = (0,1), s = (0,-1), then each word is a path in the two-dimensional integer lattice starting from (0,0), never going below the x-axis and ending on the x-axis. Thus, this is a variant of Motzkin paths with two kinds of level steps. The algebraic definition is L = 1 + Le + Lw + LnLs - w where each word is regarded as a noncommutative monomial with variables in S. Replacing each letter in S by x and L by the g.f. A(x) leads to x + A(x) = (1 + x*A(x))^2. If we let y = x + x*x*A, then y^2 - y = x^3 - x which is an elliptic curve. - Michael Somos, Mar 28 2020
The Hankel number wall for the sequence L(0), L(1), ... has a zigzag diagonal sequence b(0) = 1, b(1) = 1. b(2) = e, b(3) = ew+ns, b(4) = na(ee-ew-ns), ... which is a generalized Somos-5 sequence with b(i)*b(i+5) = -n*s*b(i+1)*b(i+4) + e*n*s*b(i+2)*b(i+3). Define sequence c(0) = 0, c(1) = 1, c(i) = b(i-2) for i>1, and c(i) = -(-n*s)^(-i)*c(-i) if i<0. Then c(i)*c(i+5) = -n*s*c(i+1)*c(i+4) + e*n*s*c(i+2)*c(i+3) for all i in Z. If e=w=n=s=1, then c(i) = A006769(i) * (-1)^[mod(i,4)=3]. - Michael Somos, Oct 14 2024

Examples

			L(0) = 1, L(1) = e, L(2) = ee + ew + ns, L(3) = eee + ewe + nse + eew + eww + nsw + nes + ens.
G.f. = 1 + x + 3*x^2 + 8*x^3 + 23*x^4 + 68*x^5 + 207*x^6 + 644*x^7 + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - 2 x - Sqrt[1 - 4 x + 4 x^3])/(2 x^2), {x, 0, 26}], x] (* Michael De Vlieger, Oct 30 2019 *)
    a[ n_] := SeriesCoefficient[ (2 - 2*x)/(1 - 2*x + (1 - 4*x + 4*x^3)^(1/2)), {x, 0, n}]; (* Michael Somos, Oct 27 2024 *)
    a[ n_] := If[ n<0, 0, SeriesCoefficient[Nest[(1 + x*#)^2 - x&, 1 + O[x], n], {x, 0, n}]]; (* Michael Somos, Oct 27 2024 *)
  • PARI
    {a(n) = if( n<0, 0, polcoef( (1 - 2*x - sqrt( 1 - 4*x + 4*x^3 + x^3 * O(x^n)) ) / (2*x^2), n))};
    
  • PARI
    {a(n) = if( n<0, 0, polcoef( (2 - 2*x)/(1 - 2*x + (1 - 4*x + 4*x^3 + x*O(x^n))^(1/2)), n))}; /* Michael Somos, Oct 27 2024 */

Formula

L = 1 + Le + Lw + LnLs - w.
a(n) = 2*a(n-1) + a(0)*a(n-2) + ... + a(n-2)*a(0) for n>1.
The Somos-4 sequence A006720(n+2) is the Hankel transform of a(n-1). See A001906 for definition of Hankel transform.
Let s(n)= A006769(n). Then 0 = f( -s(n-1) * s(n+1) / s(n)^2, -s(n) * s(n+2) / s(n+1)^2 ) where f(u, v) = u + v - (1 + u*v)^2.
G.f. A(x) satisfies 0 = f(x, A(x)) where f(u, v) = u + v - (1 + u*v)^2.
G.f.: (1 - 2*x - sqrt( 1 - 4*x + 4*x^3) ) / (2*x^2).
From Paul Barry, Mar 04 2010: (Start)
G.f.: ((1-x)/(1-2x))c(x^2(1-x)/(1-2x)^2), c(x) the g.f. of A000108;
a(n) = Sum_{k=0..floor(n/2)} (A000108(k) * Sum_{i=0..k+1} C(k+1,i)*C(n-i,n-2k-i)*(-1)^i*2^(n-2k-i)). (End)
a(n) = A025262(n+2) if n >= 0.
0 = a(n)*(+16*a(n+1) - 64*a(n+3) + 22*a(n+4)) + a(n+1)*(+32*a(n+2) - 14*a(n+3)) + a(n+2)*(+16*a(n+3) - 10*a(n+4)) + a(n+3)*(+2*a(n+3) + a(n+4)) if n>=0. - Michael Somos, Jan 18 2015

A157003 Transform of Catalan numbers whose Hankel transform gives the Somos-4 sequence.

Original entry on oeis.org

1, 1, 2, 4, 10, 27, 78, 234, 722, 2274, 7280, 23617, 77466, 256481, 856016, 2876940, 9728090, 33072228, 112974592, 387580856, 1334821448, 4613225722, 15994465796, 55615889745, 193904367362, 677709772035, 2374027931492, 8333765738127
Offset: 0

Views

Author

Paul Barry, Feb 20 2009

Keywords

Comments

Image of the Catalan numbers A000108 by the Riordan array (1, x*(1-x^2)). Hankel transform is A006720(n+2).
Partial sums of A157002.
Empirical: number of Dyck n-paths that avoid any one of {UDUDD, UUDDD, UUDUD, UUUDD}. e.g. of the 5 Dyck 3-paths UUDUDD contains UDUDD so a(3)=4. Also, number of Dyck n-paths that avoid DUD that ends at height of form 3*k+1, or that avoid UDU that ends at height of form 3*k-1. e.g. of the 5 Dyck 3-paths UUDUDD contains DUD ending at height 1 so a(3)=4. - David Scambler, Mar 24 2011
Apparently: number of Dyck n-paths with no descent length equal to twice the preceding ascent length. - David Scambler, May 11 2012

Crossrefs

Cf. A000108.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (1-Sqrt(1-4*x*(1-x^2)))/(2*x*(1-x^2)) )); // G. C. Greubel, Feb 26 2019
    
  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-4*x*(1-x^2)])/(2*x*(1-x^2)),{x,0,20}],x] (* Vaclav Kotesovec, Jan 27 2015 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-sqrt(1-4*x*(1-x^2)))/(2*x*(1-x^2))) \\ G. C. Greubel, Feb 26 2019
    
  • Sage
    ((1-sqrt(1-4*x*(1-x^2)))/(2*x*(1-x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 26 2019

Formula

G.f.: c(x*(1-x^2)) where c(x) is the g.f. of A000108;
a(n) = Sum_{k=0..n} (-1)^((n-k)/2)*(1+(-1)^(n-k))*C(k,floor((n-k)/2))*A000108(k)/2.
Conjecture: (n+1)*a(n) +(n+2)*a(n-1) +(-21*n+29)*a(n-2) +(3*n-16)*a(n-3) +40*(n-3)*a(n-4) +2*(-2*n+7)*a(n-5) +10*(-2*n+9)*a(n-6)=0. - R. J. Mathar, Nov 19 2014
Recurrence: (n+1)*a(n) = 2*(2*n-1)*a(n-1) + (n+1)*a(n-2) - 8*(n-2)*a(n-3) + 2*(2*n-7)*a(n-5). - Vaclav Kotesovec, Feb 01 2015
a(n) ~ sqrt(3-8*r) / (sqrt(Pi) * n^(3/2) * r^n), where r = 2*sin(arccos(-3^(3/2)/8)/3 - Pi/6)/sqrt(3). - Vaclav Kotesovec, Jun 05 2022

A271341 Somos's sequence {a(4,n)} defined in comment in A018896.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 10, 19, 35, 60, 156, 284, 499, 930, 1836, 7116, 21586, 52869, 115344, 356076, 972840, 3350009, 11844969, 37689894, 215136930, 785604755, 2444023816, 7985904285, 36968693334, 230985863335, 1429813280831, 6838592493455, 27144055289355, 191201731942399
Offset: 0

Views

Author

Keywords

Comments

The sequence of the first differences begins from 9 zeros, 5 1's and 4 consecutive squares, beginning with 2^2.
A generalization see in the comment in A018896.

Crossrefs

Programs

  • Magma
    [n le 10 select 1 else (Self(n-1)*Self(n-9) + Self(n-5)^2 )/Self(n-10): n in [1..40]]; // G. C. Greubel, Feb 21 2018
  • Mathematica
    k = 4; Set[#, 1] & /@ Map[a[k, #] &, Range[0, 2 k + 1]]; a[k_, n_] /;
    n >= 2 k + 2 := (a[k, n - 1] a[k, n - 2 k - 1] + a[k, n - k - 1]^2) / a[k, n - 2 k - 2]; Table[a[k, n], {n, 0, 42}] (* Michael De Vlieger, Apr 04 2016 *)
    a[n_ /; 0 <= n <= 10] = 1; a[n_]:= a[n] = (a[n-1]*a[n-9] + a[n-5]^2)/a[n -10]; Table[a[n], {n,0,40}] (* G. C. Greubel, Feb 21 2018 *)
  • PARI
    {a(n) = if(n< 10, 1, (a(n-1)*a(n-9) + a(n-5)^2)/a(n-10))};
    for(n=0,40, print1(a(n), ", ")) \\ G. C. Greubel, Feb 21 2018
    

Extensions

More terms from Michael De Vlieger, Apr 04 2016

A271835 Somos's sequence {a(5,n)} defined in comment in A018896: a(0)=a(1)= ... = a(11) = 1; for n>=12, a(n) = (a(n-1)*a(n-11) + a(n-6)^2)/a(n-12).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 11, 20, 36, 61, 97, 243, 425, 700, 1199, 2183, 4115, 14902, 43515, 102827, 214168, 418685, 1223440, 3053628, 9484929, 31351174, 95335734, 260010845, 1305343146, 4437434637, 12553187856, 35704506092
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 12 select 1 else (Self(n-1)*Self(n-11) + Self(n-6)^2 )/Self(n-12): n in [1..50]]; // G. C. Greubel, Feb 21 2018
  • Mathematica
    a[k_,n_]:=a[k,n]= If[n>2k+1,(a[k,(n-1)]*a[k,(n-2k-1)]+(a[k,(n-k-1)])^2 )/a[k,(n-2k-2)],1]; Map[a[5,#]&,Range[0,43]] (* Peter J. C. Moses, Apr 15 2016 *)
    RecurrenceTable[{Table[a[i]==1,{i,0,11}],a[n]==(a[n-1]a[n-11]+a[n-6]^2)/ a[n-12]},a,{n,50}](* Harvey P. Dale, Sep 24 2021 *)
  • PARI
    {a(n) = if(n< 12, 1, (a(n-1)*a(n-11) + a(n-6)^2)/a(n-12))};
    for(n=0,50, print1(a(n), ", ")) \\ G. C. Greubel, Feb 21 2018
    

Extensions

More terms from Alois P. Heinz, Apr 15 2016

A271837 Somos's sequence {a(7,n)} defined in comment in A018896: a(0)=a(1)= ... = a(15) = 1; for n>=16, a(n) = (a(n-1)*a(n-15)+ a(n-8)^2)/a(n-16).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 22, 38, 63, 99, 148, 212, 505, 842, 1284, 1966, 3153, 5312, 9200, 15968, 51401, 141522, 319386, 631223, 1149722, 2003800, 3442200, 9402302, 20908517, 55671036, 164685883, 466783858
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 16 select 1 else (Self(n-1)*Self(n-15) + Self(n-8)^2 )/Self(n-16): n in [1..50]]; // G. C. Greubel, Feb 21 2018
  • Mathematica
    a[k_,n_]:=a[k,n] = If[n>2*k+1,(a[k,(n-1)]*a[k,(n-2*k-1)]+(a[k,(n-k-1)])^2 )/a[k,(n-2*k-2)],1]; Map[a[7,#]&,Range[0,50]] (* Peter J. C. Moses, Apr 15 2016 *)
  • PARI
    {a(n) = if(n< 16, 1, (a(n-1)*a(n-15) + a(n-8)^2)/a(n-16))};
    for(n=0,50, print1(a(n), ", ")) \\ G. C. Greubel, Feb 21 2018
    

A271838 Somos's sequence {a(8,n)} defined in comment in A018896: a(0)=a(1)= ... = a(17) = 1; for n>=18, a(n) = (a(n-1)*a(n-17)+ a(n-9)^2)/a(n-18).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 23, 39, 64, 100, 149, 213, 294, 688, 1130, 1683, 2484, 3800, 6100, 10143, 17082, 28584, 87352, 234714, 521145, 1013424, 1809100, 3067659, 5075784, 8375940, 22379904, 47848348
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 18 select 1 else (Self(n-1)*Self(n-17) + Self(n-9)^2 )/Self(n-18): n in [1..40]]; // G. C. Greubel, Feb 21 2018
  • Mathematica
    a[k_,n_]:=a[k,n] = If[n>2*k+1,(a[k,(n-1)]*a[k,(n-2*k-1)]+(a[k,(n-k-1)])^2 )/a[k,(n-2*k-2)],1]; Map[a[8,#]&,Range[0,50]] (* Peter J. C. Moses, Apr 15 2016 *)
    RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==a[4]==a[5]==a[6]==a[7]==a[8]==a[9]== a[10]==a[11]==a[12]==a[13]==a[14]==a[15]==a[16]==a[17]==1,a[n]==(a[n-1]a[n-17]+ a[n-9]^2)/a[n-18]},a,{n,60}] (* Harvey P. Dale, Jun 30 2023 *)
  • PARI
    {a(n) = if(n< 18, 1, (a(n-1)*a(n-17) + a(n-9)^2)/a(n-18))};
    for(n=0,40, print1(a(n), ", ")) \\ G. C. Greubel, Feb 21 2018
    

A271839 Somos's sequence {a(9,n)} defined in comment in A018896: a(0)= a(1) = ... = a(19) = 1; for n >= 20, a(n) = (a(n-1)*a(n-19) + a(n-10)^2)/a(n-20).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 24, 40, 65, 101, 150, 214, 295, 395, 911, 1479, 2164, 3105, 4571, 7033, 11252, 18383, 30095, 48707, 141866, 372815, 816479, 1567804, 2757573, 4585139, 7385515
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 20 select 1 else (Self(n-1)*Self(n-19) + Self(n-10)^2 )/Self(n-20): n in [1..50]]; // G. C. Greubel, Feb 21 2018
  • Mathematica
    a[k_,n_]:=a[k,n]=If[n>2k+1,(a[k,(n-1)]*a[k,(n-2k-1)]+(a[k,(n-k-1)])^2)/a[k,(n-2k-2)],1];
    Map[a[9,#]&,Range[0,70]] (* Peter J. C. Moses, Apr 15 2016 *)
  • PARI
    {a(n) = if(n< 20, 1, (a(n-1)*a(n-19) + a(n-10)^2)/a(n-20))};
    for(n=0,50, print1(a(n), ", ")) \\ G. C. Greubel, Feb 21 2018
    

A157005 A Somos-4 variant.

Original entry on oeis.org

1, 2, 8, 24, 112, 736, 3776, 40192, 391424, 4203008, 85312512, 1270368256, 32235102208, 1038278549504, 27640704385024, 1549962593927168, 73624753456480256, 4273828146025070592, 435765959975516766208
Offset: 0

Views

Author

Paul Barry, Feb 20 2009

Keywords

Comments

Hankel transform of A157004.

Crossrefs

Programs

  • GAP
    a:=[1,2,8,24];; for n in [5..20] do a[n]:=(a[n-1]*a[n-3] + a[n-2]^2)/a[n-4]; od; a; # G. C. Greubel, Feb 23 2019
  • Magma
    I:=[1,2,8,24]; [n le 4 select I[n] else (Self(n-1)*Self(n-3) + Self(n-2)^2)/Self(n-4): n in [1..20]]; // G. C. Greubel, Feb 23 2019
    
  • Mathematica
    RecurrenceTable[{a[0]==1,a[1]==2,a[2]==8,a[3]==24,a[n]==(a[n-1] a[n-3]+a[n-2]^2)/a[n-4]},a,{n,20}]  (* Harvey P. Dale, Apr 30 2011 *)
  • PARI
    m=20; v=concat([1,2,8,24], vector(m-4)); for(n=5, m, v[n] = (v[n-1]*v[n-3] +v[n-2]^2)/v[n-4]); v \\ G. C. Greubel, Feb 23 2019
    
  • Sage
    def a(n):
        if (n==0): return 1
        elif (n==1): return 2
        elif (n==2): return 8
        elif (n==3): return 24
        else: return (a(n-1)*a(n-3) + a(n-2)^2)/a(n-4)
    [a(n) for n in (0..20)] # G. C. Greubel, Feb 23 2019
    

Formula

a(n) = (a(n-1)*a(n-3) + a(n-2)^2)/a(n-4), with a(0)=1, a(1)=2, a(2)=8, a(3)=24.
a(n) = 2^n*A006720(n+2).

A028937 Denominator of x-coordinate of (2n)*P where P = (0,0) is the generator for rational points on the curve y^2 + y = x^3 - x.

Original entry on oeis.org

1, 1, 1, 25, 16, 841, 16641, 4225, 13608721, 264517696, 12925188721, 5677664356225, 49020596163841, 158432514799144041, 62586636021357187216, 1870098771536627436025, 41998153797159031581158401, 15402543997324146892198790401
Offset: 1

Views

Author

Keywords

Examples

			a(4) = 25 where 8P = (21/25, -69/125).
		

Crossrefs

Programs

Formula

P=(0, 0), 2P=(1, 0); if kP=(a, b) then (k+1)P = (a' = (b^2 - a^3)/a^2, b' = -1 - b*a'/a).
a(n) = A028941(2n). - Seiichi Manyama, Nov 19 2016
a(n) = a(-n) = b(n)*b(n+3) - b(n+1)*b(n+2) for all n in Z where b(n) = A006720(n). - Michael Somos, Mar 23 2022
Previous Showing 41-50 of 93 results. Next