cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A025262 a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ... + a(n-1)*a(1) for n >= 4.

Original entry on oeis.org

1, 1, 1, 3, 8, 23, 68, 207, 644, 2040, 6558, 21343, 70186, 232864, 778550, 2620459, 8872074, 30195288, 103246502, 354508628, 1221846856, 4225644866, 14659644348, 51002664023, 177909901566, 622093882290, 2180123564130, 7656055966092
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number of ascent sequences (A022493) of length n-1 such that the nonzero entries are weakly increasing and no two consecutive entries are both 0. For example a(4) = 3 counts 010, 011, 012 and a(5) = 8 counts 0101, 0102, 0110, 0111, 0112, 0120, 0122, 0123. - David Callan, Nov 25 2021
The o.g.f. y (= x + x^2 + x^3 + ...) of this sequence satisfies y^2 - y = x^3 - x. If y is replaced by -y, then it is the elliptic curve y^2 + y = x^3 - x with LMFDB label 37.a1 (Cremona label 37a1) associated to the Somos-4 sequence via elliptic divisibility sequence A006769. - Michael Somos, Apr 18 2023

Examples

			G.f. = x + x^2 + x^3 + 3*x^4 + 8*x^5 + 23*x^6 + 68*x^7 + 207*x^8 + 644*x^9 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 30; aa = ConstantArray[0, nmax]; aa[[1]] = 1; aa[[2]] = 1; aa[[3]] = 1; Do[aa[[n]] = Sum[aa[[k]] * aa[[n - k]], {k, 1, n - 1}], {n, 4, nmax}]; aa (* Vaclav Kotesovec, Jan 25 2015 *)
    Nest[Append[#, #.Reverse[#]] &, {1, 1, 1}, 25] (* Jan Mangaldan, Jul 07 2020 *)
  • PARI
    {a(n) = polcoeff( (1 - sqrt(1 - 4*x + 4*x^3 + x * O(x^n))) / 2, n)}; /* Michael Somos, Aug 04 2000 */

Formula

G.f.: (1 - sqrt(1 - 4*x + 4*x^3)) / 2. Satisfies A(x) - A(x)^2 = x - x^3. - Michael Somos, Aug 04 2000
Given an integer t >= 1 and initial values u = [a_0, a_1, ..., a_{t-1}], we may define an infinite sequence Phi(u) by setting a_n = a_{n-1} + a_0*a_{n-1} + a_1*a_{n-2} + ... + a_{n-2}*a_1 for n >= t. For example Phi([1]) is the Catalan numbers A000108. The present sequence is Phi([1,1,1]). - Gary W. Adamson, Oct 27 2008
Row sums of A176703 if offset 0. - Michael Somos, Jan 09 2012
a(n+2) = A056010(n) if n >= 0.
a(n) = Sum_{m=0..floor((n-1)/2)} C(n-2*m-1)*binomial(n-2*m,m)*(-1)^m, where C = A000108 are the Catalan numbers. - Vladimir Kruchinin, Jan 26 2013
0 = a(n)*(+16*a(n+1) - 64*a(n+3) + 22*a(n+4)) + a(n+1)*(+32*a(n+2) - 14*a(n+3)) + a(n+2)*(+16*a(n+3) - 10*a(n+4)) + a(n+3)*(+2*a(n+3) + a(n+4)) if n>0. - Michael Somos, Jan 18 2015
Recurrence: n*a(n) = 2*(2*n-3)*a(n-1) - 2*(2*n-9)*a(n-3). - Vaclav Kotesovec, Jan 25 2015
a(n) ~ sqrt(3 - 8*r) * (4 - 4*r^2)^n / (4*sqrt(Pi)*n^(3/2)), where r = 2*sin(arccos(-3^(3/2)/8)/3 - Pi/6)/sqrt(3). - Vaclav Kotesovec, Jun 05 2022

A160702 Sequence such that the Hankel transform of a(n+1) satisfies a generalized Somos-4 recurrence.

Original entry on oeis.org

1, 1, 1, 5, 19, 79, 333, 1441, 6351, 28451, 129185, 593373, 2752427, 12876343, 60684533, 287857209, 1373286375, 6584979659, 31719337353, 153416338549, 744777567043, 3627787084319
Offset: 0

Views

Author

Paul Barry, May 24 2009

Keywords

Comments

The Hankel transform of a(n+1) satisfies a generalized Somos-4 Hankel determinant recurrence.
Hankel transform of a(n+1) is A160703. In general, we can conjecture that the Hankel transform of
h(n) of a(n+1), where a(n)=if(n=0,1,if(n=1,1,if(n=2,1,r*a(n-1)+s*sum{k=0..n-2, a(k)*a(n-1-k)}))),
satisfies the generalized Somos-4 recurrence
h(n)=(s^2*h(n-1)*h(n-3)+s^3*(2*s+r-2)*h(n-2)^2)/h(n-4).
The case r=s=1 is proved in the Xin reference.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/4+(1-Sqrt[16*x^3+x^2-6*x+1])/(4*x),{x,0,20}],x] (* Vaclav Kotesovec, Nov 20 2012 *)

Formula

a(n) = if(n=0,1,if(n=1,1,if(n=2,1,a(n-1)+2*sum{k=0..n-2, a(k)*a(n-1-k)})))
Recurrence: (n+1)*a(n) = 3*(2*n-1)*a(n-1) - (n-2)*a(n-2) - 8*(2*n-7)*a(n-3). - Vaclav Kotesovec, Nov 20 2012
G.f.: 1/4+(1-sqrt(16*x^3+x^2-6*x+1))/(4*x). - Vaclav Kotesovec, Nov 20 2012

A173992 Sequence whose Hankel transform is the Somos (4) sequence.

Original entry on oeis.org

1, 1, 3, 6, 15, 34, 83, 198, 488, 1202, 3015, 7608, 19432, 49994, 129779, 339176, 892600, 2362634, 6288156, 16816232, 45170466, 121812152, 329679487, 895171236, 2437885058, 6657311202, 18224979884, 50006899724, 137502724754
Offset: 0

Views

Author

Paul Barry, Mar 04 2010

Keywords

Comments

Hankel transform is A006720(n+3). In general, the sequence with g.f. ((1-x)/(1-(r+1)*x))*c(x^2*(1-x)/(1-(r+1)*x)) will have a Somos (1,r) Hankel transform.
a(n) is the number of rooted plane 2-trees with integer compositions labeling the leaves (empty labels are allowed), with total size n. The total size is the number of edges in the tree plus the sum of the sizes of the integer compositions labeling the leaves. Example; a(2)=3 because there are two trees that consist of the root and no descendants, hence the root is itself a leaf and it can be labeled by either 2=2 or by 2=1+1, and then there is the tree that consists of the root with two descendants and no labels on the two leaves. - Ricardo Gómez Aíza, Feb 26 2024

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1-2*x-Sqrt((1-2*x)*(1-2*x-4*x^2+4*x^3)))/(2*x^2*(1-2*x)))); // G. C. Greubel, Sep 25 2018
  • Maple
    with(LREtools): with(FormalPowerSeries): # requires Maple 2022
    ogf:=(1-2*x-sqrt((1-2*x)*(1-2*x-4*x^2+4*x^3)))/(2*x^2*(1-2*x)):
    req1:= FindRE(ogf,x,u(n)); inits:= {seq(u(i-1)=[1, 1, 3, 6, 15, 34][i],i=1..6)}:
    req2:= subs(n=n-4, MinimalRecurrence(req1,u(n),inits)[1]); # Mathar's recurrence
    a:= gfun:-rectoproc({req2} union inits, u(n), remember):
    seq(a(n),n=0..28); # Georg Fischer, Nov 03 2022
  • Mathematica
    A173992[n_] := Sum[CatalanNumber[k] Sum[Binomial[k + 1, i] Binomial[n - k - i, n - 2 k - i] (-1)^i Floor[2^(n - 2 k - i)], {i, 0, k + 1}], {k, 0, Floor[n/2]}] (* Eric Rowland, May 15 2017 *)
    CoefficientList[Series[(1-2*x -Sqrt[(1-2*x)*(1-2*x-4*x^2+4*x^3)])/(2*x^2* (1-2*x)), {x, 0, 50}], x] (* G. C. Greubel, Sep 25 2018 *)
  • PARI
    a(n) = sum(k=0, n\2, binomial(2*k,k)/(k+1)*sum(i=0, k+1, binomial(k+1,i)*binomial(n-k-i,n-2*k-i)*(-1)^i*2^(n-2*k-i))); \\ Michel Marcus, May 15 2017
    
  • PARI
    x='x+O('x^50); Vec((1-2*x-((1-2*x)*(1-2*x-4*x^2+4*x^3))^(1/2))/(2*x^2*(1-2*x))) \\ Altug Alkan, Sep 25 2018
    

Formula

G.f.: ((1-x)/(1-2*x)) * c(x^2*(1-x)/(1-2*x)) = (1-2*x-sqrt((1-2x)*(1-2*x-4*x^2+4*x^3)))/(2*x^2*(1-2*x)), c(x) the g.f. of A000108;
a(n) = Sum_{k=0..floor(n/2), A000108(k)*Sum_{i=0..k+1, C(k+1,i)*C(n-k-i,n-2k-i)*(-1)^i*2^(n-2k-i)}}.
D-finite with recurrence: (n+2)*a(n) -4*(n+1)*a(n-1) +4*a(n-2) +2*(6n-11)*a(n-3) +8*(3-n)*a(n-4)=0. - R. J. Mathar, Nov 17 2011
a(n) ~ sqrt(2-5*c+4*c^2)/(2*c*(1-2*c)*sqrt(Pi*n^3))*(1/c)^n where c=(4+(1+i*sqrt(3))*(1+3*i*sqrt(111))^(1/3)+80/((sqrt(3)+i)^2*(1+3*i*sqrt(111))^(1/3)))/12. - Ricardo Gómez Aíza, Feb 26 2024

A157002 Transform of Catalan numbers whose Hankel transform gives the Somos-4 sequence.

Original entry on oeis.org

1, 0, 1, 2, 6, 17, 51, 156, 488, 1552, 5006, 16337, 53849, 179015, 599535, 2020924, 6851150, 23344138, 79902364, 274606264, 947240592, 3278404274, 11381240074, 39621423949, 138288477617, 483805404673, 1696318159457, 5959737806635
Offset: 0

Views

Author

Paul Barry, Feb 20 2009

Keywords

Comments

Image of the Catalan numbers A000108 by the Riordan array (1-x,x(1-x^2)). Hankel transform is A006720(n+1).
The sequence a(n)+a(n+1) begins 1,1,3,8,23,68,... which is A056010. The sequence a(n)+a(n-1) begins 1,1,1,3,8,23,68,... which is A025262. This is obtained by applying (1-x^2,x(1-x^2)) to the Catalan numbers.
Hankel transform of a(n+1) is -A051138(n). - Michael Somos, Feb 10 2015

Examples

			G.f. = 1 + x^2 + 2*x^3 + 6*x^4 + 17*x^5 + 51*x^6 + 156*x^7 + 488*x^8 + ...
		

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (1 -Sqrt(1-4*x*(1-x^2)))/(2*x*(1+x)) )); // G. C. Greubel, Feb 26 2019
    
  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-4x(1-x^2)])/(2x(1+x)), {x,0,30}], x] (* G. C. Greubel, Feb 26 2019 *)
  • PARI
    {a(n) = if( n<0, -(-1)^n / 2 * (n<-1), polcoeff( (1 - sqrt(1 - 4*x * (1 - x^2) + x^2 * O(x^n))) / (2 * x * (1 + x)), n))}; /* Michael Somos, Feb 10 2015 */
    
  • Sage
    ((1-sqrt(1-4*x*(1-x^2)))/(2*x*(1+x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 26 2019

Formula

G.f.: (1 - sqrt(1-4*x*(1-x^2)))/(2*x*(1+x)).
a(n) = Sum_{k=0..n} (-1)^floor((n-k+1)/2)*C(k,floor((n-k)/2))*A000108(k).
Conjecture: (n+1)*a(n) +3*(-n+1)*a(n-1) +2*(-2*n+1)*a(n-2) +2*(2*n-7)*a(n-3) +2*(2*n-7)*a(n-4)=0. - R. J. Mathar, Nov 19 2014
0 = a(n)*(+16*a(n+1) + 16*a(n+2) - 64*a(n+3) - 42*a(n+4) + 22*a(n+5)) + a(n+1)*(+16*a(n+1) + 48*a(n+2) - 46*a(n+3) - 56*a(n+4) + 22*a(n+5)) + a(n+2)*(+32*a(n+2) + 34*a(n+3) - 8*a(n+4) - 10*a(n+5)) + a(n+3)*(+18*a(n+3) + 11*a(n+4) - 9*a(n+5)) + a(n+4)*(+3*a(n+4) + a(n+5)) for all n in Z. - Michael Somos, Feb 10 2015

A087626 Expansion of 2/(1-2x+sqrt(1-4x+4x^3)).

Original entry on oeis.org

1, 2, 5, 13, 36, 104, 311, 955, 2995, 9553, 30896, 101082, 333946, 1112496, 3732955, 12605029, 42800317, 146046819, 500555447, 1722402303, 5948047169, 20607691517, 71610355540, 249520257106, 871614139396, 3051737703526
Offset: 0

Views

Author

Michael Somos, Sep 16 2003

Keywords

Examples

			G.f. = 1 + 2*x + 5*x^2 + 13*x^3 + 36*x^4 + 104*x^5 + 311*x^6 + 955*x^7 + ... - _Michael Somos_, Mar 28 2020
		

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({(6+4*n)*a(n)+(-6-4*n)*a(n+1)+(-18-4*n)*a(2+n)+(24+5*n)*a(n+3)+(-6-n)*a(n+4), a(0) = 1, a(1) = 2, a(2) = 5, a(3) = 13},a(n),remember):
    map(f, [$0..50]); # Robert Israel, Oct 26 2018
  • Mathematica
    CoefficientList[Series[2/(1-2x+Sqrt[1-4x+4x^3]),{x,0,30}],x] (* Harvey P. Dale, Jun 12 2017 *)
  • PARI
    {a(n) = polcoeff(2 / (1 - 2*x + sqrt(1 - 4*x + 4*x^3 + x*O(x^n))), n)};

Formula

G.f.: 2/(1-2x+sqrt(1-4x+4x^3)).
G.f. A(x) satisfies 0 = x^2*(1-x)*A(x)^2 - (1-2*x)*A(x) + 1.
First backwards difference is A056010.
(6+4*n)*a(n)+(-6-4*n)*a(n+1)+(-18-4*n)*a(2+n)+(24+5*n)*a(n+3)+(-6-n)*a(n+4)=0. - Robert Israel, Oct 26 2018
HANKEL transform is A006720(n+2). HANKEL transform with 0 prepended is -A051138.
INVERT transform of A157003. - Michael Somos, Mar 28 2020

A349185 G.f. A(x) satisfies: A(x) = (1 - x) / (1 - 2 * x - x^2 - x^2 * A(x)).

Original entry on oeis.org

1, 1, 4, 11, 35, 111, 365, 1221, 4160, 14371, 50251, 177503, 632514, 2271027, 8208259, 29840993, 109049568, 400352639, 1475929092, 5461571729, 20279092033, 75531360153, 282123848574, 1056539226257, 3966214054639, 14922195004703, 56258116929483, 212505815364639, 804142811583006
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 28; A[] = 0; Do[A[x] = (1 - x)/(1 - 2 x - x^2 - x^2 A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    nmax = 28; CoefficientList[Series[(1 - 2 x - x^2 - Sqrt[1 - 4 x - 2 x^2 + 8 x^3 + x^4])/(2 x^2), {x, 0, nmax}], x]
    a[0] = a[1] = 1; a[n_] := a[n] = 2 a[n - 1] + a[n - 2] + Sum[a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 28}]

Formula

G.f.: (1 - 2*x - x^2 - sqrt(1 - 4*x - 2*x^2 + 8*x^3 + x^4)) / (2*x^2).
a(0) = a(1) = 1; a(n) = 2 * a(n-1) + a(n-2) + Sum_{k=0..n-2} a(k) * a(n-k-2).
Showing 1-6 of 6 results.