A025262
a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ... + a(n-1)*a(1) for n >= 4.
Original entry on oeis.org
1, 1, 1, 3, 8, 23, 68, 207, 644, 2040, 6558, 21343, 70186, 232864, 778550, 2620459, 8872074, 30195288, 103246502, 354508628, 1221846856, 4225644866, 14659644348, 51002664023, 177909901566, 622093882290, 2180123564130, 7656055966092
Offset: 1
G.f. = x + x^2 + x^3 + 3*x^4 + 8*x^5 + 23*x^6 + 68*x^7 + 207*x^8 + 644*x^9 + ...
- Seiichi Manyama, Table of n, a(n) for n = 1..1766
- Paul Barry, On the Hurwitz Transform of Sequences, Journal of Integer Sequences, Vol. 15 (2012), #12.8.7.
- Paul Barry, Integer sequences from elliptic curves, arXiv:2306.05025 [math.NT], 2023.
- David Callan, On Ascent, Repetition and Descent Sequences, arXiv:1911.02209 [math.CO], 2019.
- Michael Somos, Number Walls in Combinatorics.
- Fumitaka Yura, Hankel Determinant Solution for Elliptic Sequence, arXiv:1411.6972 [nlin.SI], 2014; see p. 7.
-
nmax = 30; aa = ConstantArray[0, nmax]; aa[[1]] = 1; aa[[2]] = 1; aa[[3]] = 1; Do[aa[[n]] = Sum[aa[[k]] * aa[[n - k]], {k, 1, n - 1}], {n, 4, nmax}]; aa (* Vaclav Kotesovec, Jan 25 2015 *)
Nest[Append[#, #.Reverse[#]] &, {1, 1, 1}, 25] (* Jan Mangaldan, Jul 07 2020 *)
-
{a(n) = polcoeff( (1 - sqrt(1 - 4*x + 4*x^3 + x * O(x^n))) / 2, n)}; /* Michael Somos, Aug 04 2000 */
A160702
Sequence such that the Hankel transform of a(n+1) satisfies a generalized Somos-4 recurrence.
Original entry on oeis.org
1, 1, 1, 5, 19, 79, 333, 1441, 6351, 28451, 129185, 593373, 2752427, 12876343, 60684533, 287857209, 1373286375, 6584979659, 31719337353, 153416338549, 744777567043, 3627787084319
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Paul Barry, On the Hurwitz Transform of Sequences, Journal of Integer Sequences, Vol. 15 (2012), #12.8.7.
- Gouce Xin, Proof of the Somos-4 Hankel determinants conjecture, Advances in Applied Mathematics, Volume 42, Issue 2, February 2009, Pages 152-156.
-
CoefficientList[Series[1/4+(1-Sqrt[16*x^3+x^2-6*x+1])/(4*x),{x,0,20}],x] (* Vaclav Kotesovec, Nov 20 2012 *)
A173992
Sequence whose Hankel transform is the Somos (4) sequence.
Original entry on oeis.org
1, 1, 3, 6, 15, 34, 83, 198, 488, 1202, 3015, 7608, 19432, 49994, 129779, 339176, 892600, 2362634, 6288156, 16816232, 45170466, 121812152, 329679487, 895171236, 2437885058, 6657311202, 18224979884, 50006899724, 137502724754
Offset: 0
-
m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1-2*x-Sqrt((1-2*x)*(1-2*x-4*x^2+4*x^3)))/(2*x^2*(1-2*x)))); // G. C. Greubel, Sep 25 2018
-
with(LREtools): with(FormalPowerSeries): # requires Maple 2022
ogf:=(1-2*x-sqrt((1-2*x)*(1-2*x-4*x^2+4*x^3)))/(2*x^2*(1-2*x)):
req1:= FindRE(ogf,x,u(n)); inits:= {seq(u(i-1)=[1, 1, 3, 6, 15, 34][i],i=1..6)}:
req2:= subs(n=n-4, MinimalRecurrence(req1,u(n),inits)[1]); # Mathar's recurrence
a:= gfun:-rectoproc({req2} union inits, u(n), remember):
seq(a(n),n=0..28); # Georg Fischer, Nov 03 2022
-
A173992[n_] := Sum[CatalanNumber[k] Sum[Binomial[k + 1, i] Binomial[n - k - i, n - 2 k - i] (-1)^i Floor[2^(n - 2 k - i)], {i, 0, k + 1}], {k, 0, Floor[n/2]}] (* Eric Rowland, May 15 2017 *)
CoefficientList[Series[(1-2*x -Sqrt[(1-2*x)*(1-2*x-4*x^2+4*x^3)])/(2*x^2* (1-2*x)), {x, 0, 50}], x] (* G. C. Greubel, Sep 25 2018 *)
-
a(n) = sum(k=0, n\2, binomial(2*k,k)/(k+1)*sum(i=0, k+1, binomial(k+1,i)*binomial(n-k-i,n-2*k-i)*(-1)^i*2^(n-2*k-i))); \\ Michel Marcus, May 15 2017
-
x='x+O('x^50); Vec((1-2*x-((1-2*x)*(1-2*x-4*x^2+4*x^3))^(1/2))/(2*x^2*(1-2*x))) \\ Altug Alkan, Sep 25 2018
A157002
Transform of Catalan numbers whose Hankel transform gives the Somos-4 sequence.
Original entry on oeis.org
1, 0, 1, 2, 6, 17, 51, 156, 488, 1552, 5006, 16337, 53849, 179015, 599535, 2020924, 6851150, 23344138, 79902364, 274606264, 947240592, 3278404274, 11381240074, 39621423949, 138288477617, 483805404673, 1696318159457, 5959737806635
Offset: 0
G.f. = 1 + x^2 + 2*x^3 + 6*x^4 + 17*x^5 + 51*x^6 + 156*x^7 + 488*x^8 + ...
-
m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (1 -Sqrt(1-4*x*(1-x^2)))/(2*x*(1+x)) )); // G. C. Greubel, Feb 26 2019
-
CoefficientList[Series[(1-Sqrt[1-4x(1-x^2)])/(2x(1+x)), {x,0,30}], x] (* G. C. Greubel, Feb 26 2019 *)
-
{a(n) = if( n<0, -(-1)^n / 2 * (n<-1), polcoeff( (1 - sqrt(1 - 4*x * (1 - x^2) + x^2 * O(x^n))) / (2 * x * (1 + x)), n))}; /* Michael Somos, Feb 10 2015 */
-
((1-sqrt(1-4*x*(1-x^2)))/(2*x*(1+x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 26 2019
A087626
Expansion of 2/(1-2x+sqrt(1-4x+4x^3)).
Original entry on oeis.org
1, 2, 5, 13, 36, 104, 311, 955, 2995, 9553, 30896, 101082, 333946, 1112496, 3732955, 12605029, 42800317, 146046819, 500555447, 1722402303, 5948047169, 20607691517, 71610355540, 249520257106, 871614139396, 3051737703526
Offset: 0
G.f. = 1 + 2*x + 5*x^2 + 13*x^3 + 36*x^4 + 104*x^5 + 311*x^6 + 955*x^7 + ... - _Michael Somos_, Mar 28 2020
-
f:= gfun:-rectoproc({(6+4*n)*a(n)+(-6-4*n)*a(n+1)+(-18-4*n)*a(2+n)+(24+5*n)*a(n+3)+(-6-n)*a(n+4), a(0) = 1, a(1) = 2, a(2) = 5, a(3) = 13},a(n),remember):
map(f, [$0..50]); # Robert Israel, Oct 26 2018
-
CoefficientList[Series[2/(1-2x+Sqrt[1-4x+4x^3]),{x,0,30}],x] (* Harvey P. Dale, Jun 12 2017 *)
-
{a(n) = polcoeff(2 / (1 - 2*x + sqrt(1 - 4*x + 4*x^3 + x*O(x^n))), n)};
A349185
G.f. A(x) satisfies: A(x) = (1 - x) / (1 - 2 * x - x^2 - x^2 * A(x)).
Original entry on oeis.org
1, 1, 4, 11, 35, 111, 365, 1221, 4160, 14371, 50251, 177503, 632514, 2271027, 8208259, 29840993, 109049568, 400352639, 1475929092, 5461571729, 20279092033, 75531360153, 282123848574, 1056539226257, 3966214054639, 14922195004703, 56258116929483, 212505815364639, 804142811583006
Offset: 0
-
nmax = 28; A[] = 0; Do[A[x] = (1 - x)/(1 - 2 x - x^2 - x^2 A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
nmax = 28; CoefficientList[Series[(1 - 2 x - x^2 - Sqrt[1 - 4 x - 2 x^2 + 8 x^3 + x^4])/(2 x^2), {x, 0, nmax}], x]
a[0] = a[1] = 1; a[n_] := a[n] = 2 a[n - 1] + a[n - 2] + Sum[a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 28}]
Showing 1-6 of 6 results.
Comments