cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 32 results. Next

A242107 Reduced division polynomials associated with elliptic curve y^2 + x*y = x^3 - x^2 - x + 1 and multiples of point (0, 1).

Original entry on oeis.org

0, 1, 1, 1, 1, -1, 2, -3, 1, -5, -7, -13, -16, 11, -57, 131, -113, 389, 670, 2311, 3983, 9, 23647, -81511, 140576, -484247, -833503, -5751815, -14871471, -17124617, -147165662, 710017141, -2273917871, 9644648819, 11396432249, 204006839259, 808162720720
Offset: 0

Views

Author

Michael Somos, Aug 15 2014

Keywords

Comments

This sequence is similar to Somos-5 (A006721).
For the elliptic curve "58a1" and point (0, 1) the multiple n*(0, 1) = ((3-(-1)^n)/2 * a(n+1)*a(n-1) / a(n)^2, a(n+2)^2 * a(n-4) / a(n)^3). - Michael Somos, Feb 23 2020

Examples

			a(9) = -5 and the point multiple 9*(0, 1) = (-14/(-5)^2, -169/(-5)^3).
		

Crossrefs

Programs

  • Magma
    I:=[1,1,1,1,-1]; [0] cat [n le 5 select I[n] else (-Self(n-1)* Self(n-4) + Self(n-2)*Self(n-3))/Self(n-5): n in [1..30]]; // G. C. Greubel, Aug 05 2018
  • Mathematica
    Join[{0}, RecurrenceTable[{a[n] == (-a[n-1]*a[n-4] + a[n-2]*a[n-3])/a[n-5], a[0] == 0, a[1] == 1, a[2] == 1, a[3] == 1, a[4] == 1, a[5] == -1}, a, {n, 0, 50}]] (* G. C. Greubel, Aug 05 2018 *)
  • PARI
    {a(n) = my(s=1, v); if( n<0, s=-1; n=-n); s^(n+1) * if( n, v = vector(n, k, 1); if( n<6, (-1)^(n>4), v[5] = -1; for(k=6, n, v[k] = (-v[k-1] * v[k-4] + v[k-2] * v[k-3]) / v[k-5]); v[n]))};
    
  • PARI
    {a(n) = sign(n) * subst(elldivpol(ellinit([1, -1, 0, -1, 1]), abs(n)), x, 0) / (if(n%2, 1, 2) * (-1)^((n-1)\2) * 2^(n^2\4))}; /* Michael Somos, Feb 23 2020 */
    
  • PARI
    {a(n) = my(E=ellinit([1, -1, 0, -1, 1]), z=ellpointtoz(E, [0, 1])); (-1)^(n\2) * round(ellsigma(E, n*z) / (ellsigma(E, z)^n^2 * 2^(n^2\4))) }; /* Michael Somos, Feb 25 2020 */
    
  • Python
    from gmpy2 import divexact
    A242107 = [0,1,1,1,1,-1]
    for n in range(6,30):
        A242107.append(int(divexact(-A242107[n-1]*A242107[n-4]+A242107[n-2]*A242107[n-3],A242107[n-5])))
    print(A242107) # Chai Wah Wu, Aug 15 2014
    

Formula

a(n) = -(-1)^n * a(-n) for all n in Z.
0 = a(n)*a(n+5) + a(n+1)*a(n+4) - a(n+2)*a(n+3) for all n in Z.
0 = a(n)*a(n+7) - a(n+1)*a(n+6) - 2*a(n+2)*a(n+5) for all n in Z.
0 = a(n)*a(n+4) + a(n+1)*a(n+3) - a(n+2)*a(n+2) for all even n in Z.
0 = a(n)*a(n+4) + 2*a(n+1)*a(n+3) - a(n+2)*a(n+2) for all odd n in Z.
abs(a(n)) = A242108(n) for all n in Z.
a(2*n) = A178622(n) for all n in Z. - Michael Somos, Aug 21 2014
a(2*n-3) = A328380(n) for all n in Z. - Michael Somos, Feb 23 2020

Extensions

Definition edited by Michael Somos, Feb 23 2020

A271950 Somos's sequence {b(5,n)} defined in comment in A078495: a(0)=a(1)=...=a(12)=1; for n>=13, a(n)=(a(n-1)*a(n-12)+a(n-6)*a(n-7))/a(n-13).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 9, 15, 27, 47, 77, 119, 301, 519, 827, 1351, 2345, 4263, 10598, 35021, 91652, 200923, 396578, 742721, 2258305, 5126953, 14354017, 45716169, 138331649, 377080865, 1330892225, 5490413305, 16470110241
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 13 select 1 else ((Self(n-1)*Self(n-12) + Self(n-6)*Self(n- 7) )/Self(n-13)): n in [1..40]]; // G. C. Greubel, Feb 21 2018
  • Mathematica
    a[k_,n_]:=a[k,n]=If[n>2k+2,(a[k,(n-1)]*a[k,(n-2k-2)]+a[k,(n-k-1)]*a[k,(n-k-2)])/a[k,(n-2k-3)],1];
    Map[a[5,#]&,Range[0,50]] (* Peter J. C. Moses, Apr 17 2016 *)
    RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==a[4]==a[5]==a[6]==a[7]== a[8]== a[9]== a[10]== a[11] ==a[12]==1,a[n]==(a[n-1]a[n-12]+a[n-6]a[n-7])/a[n-13]},a,{n,50}] (* Harvey P. Dale, May 01 2018 *)
  • PARI
    {a(n) = if(n< 12, 1, (a(n-1)*a(n-12) + a(n-6)*a(n-7))/a(n-13))};
    for(n=0,40, print1(a(n), ", ")) \\ G. C. Greubel, Feb 21 2018
    

A271952 Somos's sequence {b(6,n)} defined in comment in A078495: a(0)=a(1)=...=a(14)=1; for n>=15, a(n)=(a(n-1)*a(n-14)+a(n-7)*a(n-8))/a(n-15).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 10, 16, 28, 48, 78, 120, 176, 432, 728, 1120, 1736, 2832, 4864, 8576, 20224, 63808, 162624, 348224, 668288, 1204736, 2114560, 6175744, 13394432, 34860544, 104595968, 304683008, 807587840
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 15 select 1 else (Self(n-1)*Self(n-14)+Self(n-7)*Self(n-8))/Self(n-15): n in [1..60]]; // G. C. Greubel, Jul 30 2018
  • Mathematica
    a[k_,n_]:=a[k,n]=If[n>2k+2,(a[k,(n-1)]*a[k,(n-2k-2)]+a[k,(n-k-1)]*a[k,(n-k-2)])/a[k,(n-2k-3)],1];
    Map[a[6,#]&,Range[0,50]] (* Peter J. C. Moses, Apr 17 2016 *)
  • PARI
    {a(n) = if(n<= 15, 1, (a(n-1)*a(n-14) + a(n-7)*a(n-8))/a(n-15))}; for(n=1,50, print1(a(n), ", ")) \\ G. C. Greubel, Jul 30 2018
    

A210098 Somos-5 sequence variant: a(n) = (a(n-1) * a(n-4) - a(n-2) * a(n-3)) / a(n-5), a(0) = 0, a(1) = a(2) = a(3) = a(4) = 1, a(5) = 2.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, -1, -3, -5, -4, -11, -13, -7, 23, 86, 87, 199, 415, 799, -152, -4159, -8063, -17047, -38727, -155366, -142471, 445015, 2309453, 7627979, 13609844, 81138437, 187790979, 142104721, -1743980081, -12357952274, -25547499185, -134098256401
Offset: 0

Views

Author

Michael Somos, Mar 17 2012

Keywords

Comments

This is a divisibility sequence; that is, if n divides m, then a(n) divides a(m).

Examples

			G.f. = x + x^2 + x^3 + x^4 + 2*x^5 + x^6 - x^7 - 3*x^8 - 5*x^9 - 4*x^10 + ...
		

Crossrefs

Cf. A006721.

Programs

  • Magma
    I:=[1,1,1,1,2]; [n le 5 select I[n] else (Self(n-1)*Self(n-4) - Self(n-2)*Self(n-3))/Self(n-5): n in [1..50]]; // G. C. Greubel, Aug 11 2018
  • Maple
    a:= proc(n) a(n):= `if`(n<6, [0, 1$4, 2][n+1],
          (a(n-1)*a(n-4) -a(n-2)*a(n-3)) / a(n-5))
        end:
    seq (a(n), n=0..40);  # Alois P. Heinz, Oct 20 2012
  • Mathematica
    Join[{0},RecurrenceTable[{a[1]==a[2]==a[3]==a[4]==1,a[5]==2,a[n] == (a[n-1]a[n-4]-a[n-2]a[n-3])/a[n-5]},a,{n,40}]] (* Harvey P. Dale, Oct 20 2012 *)
  • PARI
    {a(n) = my(v, m); if( n==0, 0, m = abs(n); sign(n) * if( m<6, 1 + (m>4), v = vector( m, i, 1); v[5] = 2; for( i=6, m, v[i] = (v[i-1] * v[i-4] - v[i-2] * v[i-3]) / v[i-5]); v[m]))};
    

Formula

a(n) = -a(-n), a(n) * a(n-5) = a(n-1) * a(n-4) - a(n-2) * a(n-3) for all n in Z.
a(n+4) * a(n-4) = a(n+2) * a(n-2) - a(n) * a(n), a(n+2) * a(n-2) = (2 - (-1)^n) * a(n+1) * a(n-1) - a(n) * a(n) for all n in Z.

A271954 Somos's sequence {b(7,n)} defined in comment in A078495: a(0)=a(1)=...=a(16)=1; for n>=17, a(n)=(a(n-1)*a(n-16)+a(n-8)*a(n-9))/a(n-17).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 17, 29, 49, 79, 121, 177, 249, 597, 989, 1483, 2209, 3425, 5589, 9447, 16137, 36240, 109683, 273382, 574885, 1081260, 1898415, 3213378, 5381793, 15251949, 31924773, 78189885
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 17 select 1 else (Self(n-1)*Self(n-16)+Self(n-8)*Self(n-9))/Self(n-17): n in [1..60]]; // G. C. Greubel, Jul 30 2018
  • Mathematica
    a[k_,n_]:=a[k,n]=If[n>2k+2,(a[k,(n-1)]*a[k,(n-2k-2)]+a[k,(n-k-1)]*a[k,(n-k-2)])/a[k,(n-2k-3)],1];
    Map[a[7,#]&,Range[0,50]] (* Peter J. C. Moses, Apr 17 2016 *)
  • PARI
    {a(n) = if(n<= 17, 1, (a(n-1)*a(n-16) + a(n-8)*a(n-9))/a(n-17))}; for(n=1,50, print1(a(n), ", ")) \\ G. C. Greubel, Jul 30 2018
    

A276531 a(n) = (a(n-1) * a(n-5) + a(n-2) * a(n-3) * a(n-4)) / a(n-6), with a(0) = a(1) = a(2) = a(3) = a(4) = a(5) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 5, 11, 41, 247, 1498, 39629, 3121233, 1344630757, 4527359876765, 673384475958949877, 12684198948982702826816701, 103442271685605704255863097581658042, 12389248756108266360505757651017660004796444483503, 657084395567781339286109602463271066924826185667810218784212689809097
Offset: 0

Views

Author

Seiichi Manyama, Nov 16 2016

Keywords

Comments

This sequence is the generalization of Dana Scott's sequence (A048736).
Conjecture: a(n) is an integer for all n. It has been checked by computer for 0 <= n <= 50.
The recursion has the Laurent property. If a(0), ..., a(5) are variables, then a(n) is a Laurent polynomial (a rational function with a monomial denominator). - Michael Somos, Nov 21 2016

Crossrefs

Programs

  • GAP
    a:=[1,1,1,1,1,1];; for n in [7..25] do a[n]:=(a[n-1]*a[n-5]+a[n-2]*a[n-3]*a[n-4])/a[n-6]; od; a; # Muniru A Asiru, Jul 30 2018
  • Magma
    I:=[1,1,1,1,1,1]; [n le 6 select I[n] else (Self(n-1)*Self(n-5) + Self(n-2)*Self(n-3)*Self(n-4))/Self(n-6): n in [1..30]]; // G. C. Greubel, Jul 30 2018
    
  • Mathematica
    RecurrenceTable[{a[n] == (a[n - 1] a[n - 5] + a[n - 2] a[n - 3] a[n - 4])/a[n - 6], a[0] == a[1] == a[2] == a[3] == a[4] == a[5] == 1}, a, {n, 0, 21}] (* Michael De Vlieger, Nov 21 2016 *)
    nxt[{a_,b_,c_,d_,e_,f_}]:={b,c,d,e,f,(b*f+d*e*c)/a}; NestList[nxt,{1,1,1,1,1,1},30][[All,1]] (* Harvey P. Dale, Nov 21 2021 *)
  • Ruby
    def A(k, n)
      a = Array.new(k, 1)
      ary = [1]
      while ary.size < n + 1
        i = a[-1] * a[1] + a[2..-2].inject(:*)
        break if i % a[0] > 0
        a = *a[1..-1], i / a[0]
        ary << a[0]
      end
      ary
    end
    def A276531(n)
      A(6, n)
    end
    

Formula

a(n) * a(n-6) = a(n-1) * a(n-5) + a(n-2) * a(n-3) * a(n-4).
a(5-n) = a(n) for all n in Z.

A276532 a(n) = (a(n-1) * a(n-6) + a(n-2) * a(n-3) * a(n-4) * a(n-5)) / a(n-7), with a(0) = a(1) = a(2) = a(3) = a(4) = a(5) = a(6) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 3, 5, 11, 41, 371, 7507, 429563, 419408854, 9811194604889, 45615501062085527113, 323645006689468299915979814409, 217332607887523478570092794860281557159140687, 8092345737591989154121803868154457767563221634145658745306515944569
Offset: 0

Views

Author

Seiichi Manyama, Nov 16 2016

Keywords

Comments

This sequence is one generalization of Dana Scott's sequence (A048736).
a(n) is an integer for all n.
The recursion exhibits the Laurent phenomenon. See A278706 for the exponents of the denominator of the Laurent polynomial. - Michael Somos, Nov 26 2016

Crossrefs

Programs

  • Ruby
    def A(k, n)
      a = Array.new(k, 1)
      ary = [1]
      while ary.size < n + 1
        i = a[-1] * a[1] + a[2..-2].inject(:*)
        break if i % a[0] > 0
        a = *a[1..-1], i / a[0]
        ary << a[0]
      end
      ary
    end
    def A276532(n)
      A(7, n)
    end

Formula

a(n) * a(n-7) = a(n-1) * a(n-6) + a(n-2) * a(n-3) * a(n-4) * a(n-5).
a(6-n) = a(n) for all n in Z.

A360381 Generalized Somos-5 sequence a(n) = (a(n-1)*a(n-4) + a(n-2)*a(n-3))/a(n-5) = -a(-n), a(1) = 1, a(2) = -1, a(3) = a(4) = 1, a(5) = -7.

Original entry on oeis.org

0, 1, -1, 1, 1, -7, 8, -1, -57, 391, -455, -2729, 22352, -175111, 47767, 8888873, -69739671, 565353361, 3385862936, -195345149609, 1747973613295, -4686154246801, -632038062613231, 34045765616463119, -319807929289790304, -11453004955077020783
Offset: 0

Views

Author

Michael Somos, Feb 04 2023

Keywords

Comments

This has the same recurrence as Somos-5 (A006721) with different initial values.
The elliptic curve y^2 + xy = x^3 + x^2 - 2x (LMFDB label 102.a1) has infinite order point P = (2, 2). The x and y coordinates of n*P have denominators a(n)^2 and |a(n)^3| respectively.
If b(2*n) = 6^(1/4)*a(2*n), b(2*n+1) = a(2*n+1), then b(n) is a generalized Somos-4 sequence with b(n+2)*b(n-2) = 6^(1/2)*b(n+1)*b(n-1) - b(n)*b(n) for all n in Z.
This is the sequence T_n in the Hone 2022 paper.

Examples

			5*P = (50/49, 20/343) and a(5) = -7, 6*P = (121/64, -1881/512) and a(6) = 8.
		

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[1] = a[3] = a[4] = 1; a[2] = -1; a[5] = -7;
    a[n_?Negative] := -a[-n];
    a[n_] := a[n] = (a[n-1] a[n-4] + a[n-2] a[n-3]) / a[n-5]; (* Andrey Zabolotskiy, Feb 05 2023 *)
    a[ n_] := Module[{A = Table[1, Max[5, Abs[n]]]}, A[[2]] = -1; A[[5]] = -7; Do[ A[[k]] = (A[[k-1]]*A[[k-4]] + A[[k-2]]*A[[k-3]])/A[[k-5]], {k, 6, Length[A]}]; If[n==0, 0, Sign[n]*A[[Abs[n]]] ]];
  • PARI
    {a(n) = my(A = vector(max(5, abs(n)), k, 1)); A[2] = -1; A[5] = -7; for(k=6, #A, A[k] = (A[k-1]*A[k-4] + A[k-2]*A[k-3])/A[k-5]); if(n==0, 0, sign(n)*A[abs(n)])};
    
  • PARI
    {a(n) = my(E = ellinit([1, 1, 0, -2, 0])); subst(elldivpol(E, n), 'x, 2) *(-1)^(n-1) / 6^((n-1)%2 + n^2\4)}; /* Michael Somos, Mar 01 2025 */

Formula

a(2*n) = -A241595(n+1), a(n) = -a(-n) for all n in Z.
From Michael Somos, Aug 19 2025: (Start)
Let S(n) = A006721(n+2) as in Hone. We have for all n in Z:
S(2*n) = S(n-1)*S(n)*a(n-1)*a(n+2) - S(n-2)*S(n+1)*a(n)*a(n+1).
S(2*n+1) = S(n)*S(n+1)*a(n-1)*a(n+2) - S(n-1)*S(n+2)*a(n)*a(n+1).
a(2*n) = a(n)*(a(n-2)*a(n+1)^2 - a(n+2)*a(n-1)^2).
a(2*n+1) = a(n-1)*a(n)^2*a(n+3) - a(n+2)*a(n+1)^2*a(n-2).
S(n-3)*S(n) = S(n-2)*S(n-1) - a(n-2)*a(n-1).
a(n-3)*a(n) = S(n-2)*S(n-1) + a(n-2)*a(n-1).
(End)

A097495 Subsequence of terms of even index in the Somos-5 sequence.

Original entry on oeis.org

1, 1, 1, 3, 11, 83, 1217, 22833, 1249441, 68570323, 11548470571, 2279343327171, 979023970244321, 771025645214210753, 816154448855663209121, 2437052403320731070558403, 7362326966302540624120605547
Offset: 0

Views

Author

Andrew Hone, Aug 24 2004

Keywords

Comments

The sequence corresponds to the sequence of points Q+nP on the curve y^2 = 4*x^3 - (121/12)*x + 845/216, where Q=(-19/12,2) and P=(17/12,-1).
For every 5th-order bilinear recurrence of Somos-5 type, b(n+3)*b(n-2) = alpha*b(n+2)*b(n-1) + beta*b(n+1)*b(n) (alpha, beta constant), both the subsequence of even index a(n)=b(2n) and that of odd index a(n)=b(2n+1) satisfy the same 4th-order Somos-4 type recurrence a(n+2)*a(n-2) = gamma*a(n+1)*a(n-1) + delta*a(n)^2, where the constant coefficients gamma, delta can be given in terms of alpha, beta and the initial data b(0), b(1), b(2), b(3), b(4).
a(n+2) is the Hankel transform of A174171. - Paul Barry, Mar 10 2010
This is a generalized Somos-4 sequence. - Michael Somos, May 12 2022

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0]==a[1]==a[2]==1,a[3]==3,a[n]==(a[n-1]a[n-3]+ 8a[n-2]^2)/a[n-4]},a,{n,20}] (* Harvey P. Dale, Sep 14 2013 *)
    a[ n_] := a[n] = Which[n<1, a[2-n], n<4, {1, 1, 3}[[n]], True, (a[n-1]*a[n-3] + 8*a[n-2]^2)/a[n-4]]; (* Michael Somos, May 12 2022 *)
  • PARI
    {a(n) = if(n<1, a(2-n), n<4, [1, 1, 3][n], (a(n-1)*a(n-3) + 8*a(n-2)^2)/a(n-4))}; /* Michael Somos, May 12 2022 */

Formula

a(n) = (a(n-1)*a(n-3) + 8*a(n-2)^2)/a(n-4).
Exact formula: a(n) = A*B^n*sigma(c+n*k)/sigma(k)^(n^2) where sigma is the Weierstrass sigma function associated to the elliptic curve y^2 = 4*x^3 - (121/12)*x + 845/216,
A = 1/sigma(c) = 0.142427718 - 1.037985022*i,
B = sigma(k)*sigma(c)/sigma(c+k)
= 0.341936209 + 0.389300717*i,
c = Integral_{infinity..-19/12} dx/y
= 0.163392410 + 0.973928783*i,
k = Integral_{17/12..infinity} dx/y
= 1.018573545,
all to 9 decimal places.
a(n) = a(2-n) = (-8*a(n-1)*a(n-4) + 57*a(n-2)*a(n-3))/a(n-5) for all n in Z. - Michael Somos, May 12 2022

A242108 a(n) = abs(A242107(n)).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 3, 1, 5, 7, 13, 16, 11, 57, 131, 113, 389, 670, 2311, 3983, 9, 23647, 81511, 140576, 484247, 833503, 5751815, 14871471, 17124617, 147165662, 710017141, 2273917871, 9644648819, 11396432249, 204006839259, 808162720720, 2405317965859
Offset: 0

Views

Author

Michael Somos, Aug 15 2014

Keywords

Comments

This sequence is similar to Somos-5 (A006721).

Crossrefs

Programs

  • PARI
    {a(n) = my(v, m); n=abs(n); if( n<6, n>0, v = vector(n, k, 1); for(k=6, n, m = (k+1)%21 - 10; v[k] = ( (-1)^( m%4==0 ) * v[k-1] * v[k-4] + (-1)^( abs((m+4)%8-4)==1 ) * v[k-2] * v[k-3]) / v[k-5]); v[n])};
    
  • PARI
    {a(n) = if( n, sqrtint( denominator( ellmul( ellinit( [1, -1,0, -1, 1]), [0, 1], n)[1])))}; /* Michael Somos, Aug 22 2014 */
    
  • Python
    from gmpy2 import divexact
    A242107 = [0,1,1,1,1,-1]
    for n in range(6,321):
        A242107.append(divexact(-A242107[n-1]*A242107[n-4]+
            A242107[n-2]*A242107[n-3],A242107[n-5]))
    A242108 = [int(abs(x)) for x in A242107] # Chai Wah Wu, Aug 15 2014

Formula

a(-n) = a(n) for all n in Z.
Previous Showing 11-20 of 32 results. Next