cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A022470 Describe the previous term! (method B - initial term is 2).

Original entry on oeis.org

2, 21, 2111, 2113, 211231, 2112213111, 211222113113, 21122312311231, 2112223111213112213111, 21122331132111311222113113, 211222321231211331122312311231, 21122331211121311121123212223111213112213111, 21122232112113211131132112213121112331132111311222113113
Offset: 1

Views

Author

Keywords

Comments

Method B = 'digit'-indication followed by 'frequency'.

Examples

			E.g., the term after 2113 is obtained by saying "2 once, 1 twice, 3 once", which gives 211231.
		

Crossrefs

Cf. A006751 (method A).

Programs

  • Mathematica
    a[1] = 2; a[n_] := a[n] = FromDigits[Flatten[{First[#], Length[#]} & /@ Split[IntegerDigits[a[n - 1]]]]]; Map[a,Range[1, 23]] (* Peter J. C. Moses, Mar 22 2013 *)
  • Python
    from itertools import accumulate, groupby, repeat
    def summarize(n, _):
      return int("".join(k+str(len(list(g))) for k, g in groupby(str(n))))
    def aupton(nn): return list(accumulate(repeat(2, nn), summarize))
    print(aupton(13)) # Michael S. Branicky, Feb 21 2021

A001154 Describe the previous term! (method A - initial term is 9).

Original entry on oeis.org

9, 19, 1119, 3119, 132119, 1113122119, 311311222119, 13211321322119, 1113122113121113222119, 31131122211311123113322119, 132113213221133112132123222119
Offset: 1

Views

Author

Keywords

Comments

Method A = 'frequency' followed by 'digit'-indication.
a(n+1) - a(n) is divisible by 10^5 for n > 5. - Altug Alkan, Dec 04 2015

Examples

			E.g. the term after 3119 is obtained by saying "one 3, two 1's, one 9", which gives 132119.
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 452-455.
  • I. Vardi, Computational Recreations in Mathematica. Addison-Wesley, Redwood City, CA, 1991, p. 4.

Crossrefs

Programs

  • Mathematica
    RunLengthEncode[x_List] := (Through[{First, Length}[ #1]] &) /@ Split[x]; LookAndSay[n_, d_: 1] := NestList[Flatten[Reverse /@ RunLengthEncode[ # ]] &, {d}, n - 1]; F[n_] := LookAndSay[n, 9][[n]]; Table[FromDigits[F[n]], {n, 1, 11}] (* Zerinvary Lajos, Jul 08 2009 *)

A138484 Say what you see in previous term, from the right, reporting total number for each digit encountered. Initial term is 0.

Original entry on oeis.org

0, 10, 1011, 3110, 102113, 13311210, 10411223, 1322311410, 1041142322, 3213243110, 1031331422, 2214313310, 1031331422, 2214313310, 1031331422, 2214313310, 1031331422, 2214313310, 1031331422, 2214313310, 1031331422
Offset: 0

Views

Author

Keywords

Comments

After a while sequence has period 2 -> {1031331422,2214313310}

Examples

			To get the term after 102113, we say: one 3's, three 1's, one 2's, one 0's, so 13311210.
		

Crossrefs

A138493 Say what you see in previous term, from the right, reporting total number for each digit encountered. Initial term is 9.

Original entry on oeis.org

9, 19, 1911, 3119, 192113, 13311219, 19411223, 1322311419, 1941142322, 3213243119, 1931331422, 2214313319, 1931331422, 2214313319, 1931331422, 2214313319, 1931331422, 2214313319, 1931331422, 2214313319, 1931331422
Offset: 0

Views

Author

Keywords

Comments

After a while sequence has period 2 -> {1931331422,2214313319}

Examples

			To get the term after 192113, we say: one 3's, three 1's, one 2's, one 9's, so 13311219
		

Crossrefs

A014715 Decimal expansion of Conway's constant.

Original entry on oeis.org

1, 3, 0, 3, 5, 7, 7, 2, 6, 9, 0, 3, 4, 2, 9, 6, 3, 9, 1, 2, 5, 7, 0, 9, 9, 1, 1, 2, 1, 5, 2, 5, 5, 1, 8, 9, 0, 7, 3, 0, 7, 0, 2, 5, 0, 4, 6, 5, 9, 4, 0, 4, 8, 7, 5, 7, 5, 4, 8, 6, 1, 3, 9, 0, 6, 2, 8, 5, 5, 0, 8, 8, 7, 8, 5, 2, 4, 6, 1, 5, 5, 7, 1, 2, 6, 8, 1, 5, 7, 6, 6, 8, 6, 4, 4, 2, 5, 2, 2, 5, 5, 5
Offset: 1

Views

Author

Keywords

Comments

An algebraic integer of degree 71. - Charles R Greathouse IV, Aug 10 2014

Examples

			1.303577269034296391257099112152551890730702504659404875754861390628550...
		

References

  • John H. Conway, The weird and wonderful chemistry of audioactive decay, in T. M. Cover and Gopinath, eds., Open Problems in Communication and Computation, Springer, NY 1987, pp. 173-188.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 209.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 452-455.
  • Clifford A. Pickover, The Math Book, From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publ., NY, 2009, page 486.
  • I. Vardi, Computational Recreations in Mathematica. Addison-Wesley, Redwood City, CA, 1991, p. 4.

Crossrefs

Programs

  • Mathematica
    RealDigits[ NSolve[{0 == Plus @@ ({1, 0, -1, -2, -1, 2, 2, 1, -1, -1, -1, -1, -1, 2, 5, 3, -2, -10, -3, -2, 6, 6, 1, 9, -3, -7, -8, -8, 10, 6, 8, -5, -12, 7, -7, 7, 1, -3, 10, 1, -6, -2, -10, -3, 2, 9, -3, 14, -8, 0, -7, 9, 3, -4, -10, -7, 12, 7, 2, -12, -4, -2, 5, 0, 1, -7, 7, -4, 12, -6, 3, -6} x^Range[71, 0, -1])}, {x}, 105][[-1, -1, -1]]][[1]] (* Ryan Propper, Jul 29 2005 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 20080); x=NULL; r=solve(x=1, 2,\
    x^71-x^69-2*x^68-x^67+2*x^66+2*x^65+x^64-x^63-x^62-x^61-x^60\
    -x^59+2*x^58+5*x^57+3*x^56-2*x^55-10*x^54-3*x^53-2*x^52+6*x^51\
    +6*x^50+x^49+9*x^48-3*x^47-7*x^46-8*x^45-8*x^44+10*x^43+6*x^42\
    +8*x^41-5*x^40-12*x^39+7*x^38-7*x^37+7*x^36+x^35-3*x^34+10*x^33\
    +x^32-6*x^31-2*x^30-10*x^29-3*x^28+2*x^27+9*x^26-3*x^25+14*x^24\
    -8*x^23-7*x^21+9*x^20+3*x^19-4*x^18-10*x^17-7*x^16+12*x^15\
    +7*x^14+2*x^13-12*x^12-4*x^11-2*x^10+5*x^9+x^7-7*x^6+7*x^5\
    -4*x^4+12*x^3-6*x^2+3*x-6); for (n=1, 20000, d=floor(r); r=(r-d)*10; write("b014715.txt", n, " ", d)); } \\ Harry J. Smith, May 15 2009
    
  • PARI
    P=Pol([1, 0, -1, -2, -1, 2, 2, 1, -1, -1, -1, -1, -1, 2, 5, 3, -2, -10, -3, -2, 6, 6, 1, 9, -3, -7, -8, -8, 10, 6, 8, -5, -12, 7, -7, 7, 1, -3, 10, 1, -6, -2, -10, -3, 2, 9, -3, 14, -8, 0, -7, 9, 3, -4, -10, -7, 12, 7, 2, -12, -4, -2, 5, 0, 1, -7, 7, -4, 12, -6, 3, -6]); polrootsreal(P)[3] \\ Charles R Greathouse IV, Aug 10 2014

Extensions

More terms from Eric W. Weisstein, Jul 01 2003

A088203 Infinite audioactive word that shifts 1 place left under "Look and Say" method A, starting with a(1)=2.

Original entry on oeis.org

2, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 3, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 2, 1, 1, 2, 3, 1, 1, 3, 1, 1, 2, 2, 2, 1, 1, 2, 1, 3, 2, 1, 1, 3, 2, 1, 3, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 2, 1, 1, 3, 1, 2, 1, 1, 1, 3, 2, 2, 2, 1, 1, 2, 3, 1, 1, 3, 1, 1, 2, 2, 2, 1, 1, 3, 1, 1, 1, 2, 3, 1, 1, 3, 3, 2, 2, 1, 1, 2, 1, 3, 2, 1
Offset: 1

Views

Author

Paul D. Hanna, Sep 22 2003

Keywords

Comments

A006751(n) = concatenation of n-th row. - Reinhard Zumkeller, Aug 09 2012
From Jean-Christophe Hervé, May 07 2013: (Start)
The sequence is obtained continuously by applying the look-and-say rule from seed 2: 2 -> 1,2 -> 1,1,1,2 -> etc. The sequence is then determined by pairs of digits. Terms of even ranks are counts while odd ranks are figures. A225224 and A221646 are from seed 1 and A088204 from seed 3.
The present sequence is the concatenation of A006751 (original look-and-say method by blocks) because, with seed 2, all blocks of A006751 begin with 1 or 3 and end with 2 and therefore, there is no possible interaction between blocks after concatenation. (End)

References

  • J. H. Conway, The weird and wonderful chemistry of audioactive decay, in T. M. Cover and Gopinath, eds., Open Problems in Communication and Computation, Springer, NY 1987, pp. 173-188.

Crossrefs

Cf. A225224, A221646 (seed one).

Programs

  • Haskell
    -- see Watkins link, p. 3.
    import Data.List (group)
    a088203 n k = a088203_tabf !! (n-1) !! (k-1)
    a088203_row n = a088203_tabf !! (n-1)
    a088203_tabf = iterate
                   (concat . map (\xs -> [length xs, head xs]) . group) [2]
    -- Reinhard Zumkeller, Aug 09 2012

A049064 Describe the previous term in binary (method A - initial term is 0).

Original entry on oeis.org

0, 10, 1110, 11110, 100110, 1110010110, 111100111010110, 100110011110111010110, 1110010110010011011110111010110, 1111001110101100111001011010011011110111010110, 1001100111101110101100111100111010110111001011010011011110111010110
Offset: 1

Views

Author

Keywords

Comments

Method A = 'frequency' (in binary mode) followed by 'digit'-indication.
The number of digits of a(n) is A001609(n) except for n = 2. See the link from T. Sillke below. - Jianing Song, Mar 16 2019

Examples

			E.g., the term after 11110 is obtained by saying "four (i.e., 100 in binary mode) 1, one 0", which gives 100110.
		

Crossrefs

Cf. A001387 (initial term is 1), A001391, A001609 (number of digits), A259710 (written in decimal).
Decimal look-and-say sequences: A005150, A006751, A006715, A001140, A001141, A001143, A001145, A001151, A001154.

Formula

a(n) = A001391(n-1), n > 1. - R. J. Mathar, Oct 15 2008

Extensions

Edited by Charles R Greathouse IV, Apr 06 2010
a(11) from Kade Robertson, Jun 24 2015
Offset corrected by Jianing Song, Mar 16 2019

A123132 Describe prime factorization of n (primes in ascending order and with repetition) (method A - initial term is 2).

Original entry on oeis.org

12, 13, 22, 15, 1213, 17, 32, 23, 1215, 111, 2213, 113, 1217, 1315, 42, 117, 1223, 119, 2215, 1317, 12111, 123, 3213, 25, 12113, 33, 2217, 129, 121315, 131, 52, 13111, 12117, 1517, 2223, 137, 12119, 13113, 3215, 141, 121317, 143, 22111, 2315, 12123
Offset: 2

Views

Author

Herman Jamke (hermanjamke(AT)fastmail.fm), Sep 30 2006

Keywords

Comments

Method A = 'frequency' followed by 'digit'-indication. Say 'what you see' in prime factors of n, n>1.

Examples

			2 has "one 2" in its prime decomposition, so a(2)=12.
3 has "one 3" in its prime decomposition, so a(3)=13.
4=2*2 has "two 2" in its prime decomposition, so a(4)=22.
5 has "one 5" in its prime decomposition, so a(5)=15.
6=2*3 has "one 2 and one 3" in its prime decomposition, so a(6)=1213.
.....
		

Crossrefs

Programs

  • Mathematica
    a[n_] := FromDigits@ Flatten@ IntegerDigits[ Reverse /@ FactorInteger@ n]; a/@ Range[2,30] (* Giovanni Resta, Jun 16 2013 *)
  • PARI
    for(n=2,25,factn=factor(n); for(i=1,omega(n),print1(factn[i,2],factn[i,1])); print1(","))
    
  • PARI
    a(n) = my(factn=factor(n), sout = ""); for(i=1, omega(n), sout = concat(sout, Str(factn[i, 2])); sout = concat(sout, Str(factn[i, 1]))); eval(sout); \\ Michel Marcus, Jun 29 2017

A022471 Length of n-th term of A022470.

Original entry on oeis.org

1, 2, 4, 4, 6, 10, 12, 14, 22, 26, 30, 44, 56, 70, 98, 130, 162, 216, 292, 358, 470, 628, 792, 1050, 1384, 1788, 2334, 3072, 3974, 5162, 6784, 8786, 11420, 14992, 19484, 25388, 33160, 43262, 56252, 73392, 95798, 124496, 162556, 212048, 275976, 360154
Offset: 1

Views

Author

Keywords

Comments

a(n) is the length of the n-th term of many sequences generated by methods A and B, including those shown here:
Method A, 1st term ... Method B, 1st term
A006751, 2 ......... A022470, 2
A006715, 3 ......... A022499, 3
A001140, 4 ......... A022500, 4
A001141, 5 ......... A022501, 5
A001143, 6 ......... A022502, 6
A001145, 7 ......... A022503, 7
A001151, 8 ......... A022504, 8
A001154, 9 ......... A022505, 9
Clark Kimberling, Jun 14 2013

Crossrefs

Cf. A022470.

Programs

  • Mathematica
    a[0] = 2; a[n_] := a[n] = FromDigits[Flatten[{First[#], Length[#]} & /@   Split[IntegerDigits[a[n - 1]]]]]; Map[Length[IntegerDigits[a[#]]] &, Range[0, 40]] (* Peter J. C. Moses, Jun 14 2013 *)
    p = {9, -9, 6, -16, 5, 2, 0, -9, -1, -1, 20, 2, 6, -3, -15, -13, 15, 20, 15, -26, -28, 7, 6, 26, -27, -4, 9, -15, 3, 2, 8, 43, 9, -39, -24, -2, -24, 28, 9, 13, 13, -18, -12, -16, 14, 13, 16, 8, -36, 1, -6, -8, 15, 1, 14, 3, -6, -7, -3, 2, -2, 2, 2, 0, -1, -2, -1, 3, 3, -1, -1, -1}; q = {-6, 9, -9, 18, -16, 11, -14, 8, -1, 5, -7, -2, -8, 14, 5, 5, -19, -3, 6, 7, 6, -16, 7, -8, 22, -17, 12, -7, -5, -7, 8, -4, 7, 9, -13, 4, 6, -14, 14, -19, 7, 13, -2, 4, -18, 0, 1, 4, 12, -8, 5, 0, -8, -1, -7, 8, 5, 2, -3, -3, 0, 0, 0, 0, 2, 1, 0, -3, -1, 1, 1, 1, -1}; gf = Fold[x #1 + #2 &, 0, p]/Fold[x #1 + #2 &, 0, q]; CoefficientList[Series[gf, {x, 0, 100}], x] (* Peter J. C. Moses, Jun 16 2013 *)

A138485 Say what you see in previous term, from the right, reporting total number for each digit encountered. Initial term is 1.

Original entry on oeis.org

1, 11, 21, 1112, 1231, 211312, 223113, 232122, 421113, 13311214, 14411223, 13223124, 14322123, 23322114, 14213223, 23322114, 14213223, 23322114, 14213223, 23322114, 14213223, 23322114, 14213223, 23322114, 14213223
Offset: 0

Views

Author

Keywords

Comments

After a while sequence has period 2 -> {23322114,14213223}

Examples

			To get the term after 211312, we say: two 2's, three 1's, one 3's, so 223113.
		

Crossrefs

Previous Showing 11-20 of 28 results. Next