cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A007348 Primes for which -10 is a primitive root.

Original entry on oeis.org

3, 17, 29, 31, 43, 61, 67, 71, 83, 97, 107, 109, 113, 149, 151, 163, 181, 191, 193, 199, 227, 229, 233, 257, 269, 283, 307, 311, 313, 337, 347, 359, 389, 431, 433, 439, 443, 461, 467, 479, 509, 523, 541, 563, 577, 587, 593, 599, 631, 683, 701, 709, 719, 787, 821, 827, 839
Offset: 1

Views

Author

Keywords

Comments

Union of long period primes (A006883) of the form 4k+1 and half period primes (A097443) of the form 4k+3. - Davide Rotondo, Aug 25 2021

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), Table 24.8, p. 864.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    pr=-10; Select[Prime[Range[200 ] ], MultiplicativeOrder[pr, # ] == #-1 & ]
  • PARI
    is(n)=gcd(n,10)==1 && znorder(Mod(-10,n))==n-1 \\ Charles R Greathouse IV, Nov 25 2014

Extensions

More terms from N. J. A. Sloane, Apr 24 2005
Edited by N. J. A. Sloane, Aug 29 2008 at the suggestion of R. J. Mathar
A&S reference and Mathematica program corrected by T. D. Noe, Nov 04 2009

A006559 Short period primes: the decimal expansion of 1/p has period less than p-1, but greater than zero.

Original entry on oeis.org

3, 11, 13, 31, 37, 41, 43, 53, 67, 71, 73, 79, 83, 89, 101, 103, 107, 127, 137, 139, 151, 157, 163, 173, 191, 197, 199, 211, 227, 239, 241, 251, 271, 277, 281, 283, 293, 307, 311, 317, 331, 347, 349, 353, 359, 373, 397, 401, 409, 421, 431, 439, 443, 449, 457
Offset: 1

Views

Author

Keywords

Comments

Primes 2 and 5 are excluded because 1/2 and 1/5 have no period. Also primes p whose multiplicative order mod p is less than p-1.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006883.

Programs

  • Mathematica
    Select[Prime[Range[100]], MultiplicativeOrder[10, #] < # - 1 &]
  • PARI
    a(n)=gcd(n,10)==1 && isprime(n) && znorder(Mod(10,n))Charles R Greathouse IV, Mar 15 2014
    
  • Python
    from itertools import islice
    from sympy import nextprime, n_order
    def A006559_gen(startvalue=1): # generator of terms >= startvalue
        p = max(startvalue-1,1)
        while (p:=nextprime(p)):
            if p!=2 and p!=5 and n_order(10,p)A006559_list = list(islice(A006559_gen(),20)) # Chai Wah Wu, Mar 03 2025

Extensions

More terms from James Sellers, Aug 21 2000

A180340 Numbers with x digits such that the first x multiples are cyclic permutations of the number, leading 0's omitted (or cyclic numbers).

Original entry on oeis.org

142857, 588235294117647, 52631578947368421, 434782608695652173913, 344827586206896551724137931, 212765957446808510638297872340425531914893617, 169491525423728813559322033898305084745762711864406779661
Offset: 1

Views

Author

Ralph Kerchner (daxkerchner(AT)hotmail.com), Aug 28 2010

Keywords

Comments

Periodic part of decimal expansion of 1/A001913(n). The number of digits in each term (including leading zeros), plus one, makes the sequence A001913.

Examples

			142857 is in the sequence because it has 6 digits and the first 6 multiples of 142857 are 142857, 285714, 428571, 571428, 714285, and 857142, all cyclic permutations of the number. Also the first term of A001913 is 7, and 1/7 = 0.142857142857... .
588235294117647 is the next number because 0588235294117647 has 16 digits and the first 16 multiples are cyclic permutations of the number; the second term of A001913 is 17, and 1/17 = 0.05882352941176470588235294117647... .
		

Crossrefs

A006883 starting from the second term of A006883, omitting ending 0's.
The n-th terms of A060284 where n is a member of A001913.

Programs

  • Mathematica
    Map[(10^(# - 1) - 1)/# &, Select[Prime@ Range@ 17, MultiplicativeOrder[10, #] == # - 1 &]] (* Michael De Vlieger, Apr 03 2017 *)

Formula

a(n) = (10^(A001913(n)-1) - 1) / A001913(n).

A221981 Primes q = 4*p+1, where p == 2 (mod 5) is also prime.

Original entry on oeis.org

29, 149, 269, 389, 509, 1109, 1229, 1949, 2309, 2909, 3989, 4349, 5189, 5309, 6269, 6389, 7109, 7949, 8069, 9749, 10589, 10709, 11069, 11549, 12149, 12269, 13229, 13829, 14549, 15629, 16229, 17189, 17789, 18269, 19949, 20789, 22109, 22229, 24029, 24989, 25349, 25469, 25589, 26189, 26309, 28109, 28229, 28949, 29669, 30029, 30869, 31469, 32069, 33149, 34589, 34949, 36269, 36629, 36749, 37589
Offset: 1

Views

Author

Jonathan Sondow, Feb 02 2013

Keywords

Comments

Moree (2012) says that Chebyshev observed that if q = 4p + 1 is prime, with prime p == 2 (mod 5), then 10 is a primitive root modulo q.
If the sequence is infinite, then Artin's conjecture ("every nonsquare integer n != -1 is a primitive root of infinitely many primes q") is true for n = 10.
The corresponding primes p are A221982.
The sequence is infinite under Dickson's conjecture, thus Dickson's conjecture implies Artin's conjecture for n = 10. - Charles R Greathouse IV, Apr 18 2013
Two conjectures: (a) These primes have primitive root 40; (b) if a(n)*8 + 1 is prime then it has primitive root 10. - Davide Rotondo, Dec 31 2024

Examples

			29 is a member because 29 = 4*7 + 1 and 7 == 2 (mod 5) are prime.
		

References

  • P. L. Chebyshev, Theory of congruences, Elements of number theory, Chelsea, 1972, p. 306.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section F9, pp. 377-380.

Crossrefs

Programs

  • Maple
    A221981:=n->`if`(isprime(4*n+1) and isprime(n) and n mod 5 = 2, 4*n+1, NULL): seq(A221981(n), n=1..10^4); # Wesley Ivan Hurt, Dec 11 2015
  • Mathematica
    Select[ Prime[ Range[4000]], Mod[(# - 1)/4, 5] == 2 && PrimeQ[(# - 1)/4] &]
  • PARI
    is(n)=n%20==9 && isprime(n) && isprime(n\4) \\ Charles R Greathouse IV, Apr 18 2013

Formula

a(n) = 4*A221982(n) + 1.
a(n) >> n log^2 n. - Charles R Greathouse IV, Dec 30 2024

A000353 Primes p == 7, 19, 23 (mod 40) such that (p-1)/2 is also prime.

Original entry on oeis.org

7, 23, 47, 59, 167, 179, 263, 383, 503, 863, 887, 983, 1019, 1367, 1487, 1619, 1823, 2063, 2099, 2207, 2447, 2459, 2579, 2819, 2903, 3023, 3167, 3623, 3779, 3863, 4007, 4127, 4139, 4259, 4703, 5087, 5099, 5807, 5927, 5939, 6047, 6659, 6779, 6899, 6983, 7247
Offset: 1

Views

Author

Keywords

Comments

The decimal expansion of 1/a(n) will produce a stream of a(n)-1 pseudo-random digits. - Reinhard Zumkeller, Feb 10 2009
The condition in the name is sufficient for primes p such that the decimal expansion of 1/p recurs after p-1 digits, which is the maximum-possible cycle length. - Robert A. J. Matthews, Oct 31 2023

Crossrefs

Subset of A005385.
Subsequence of A001913, A006883.

Programs

  • Maple
    q:= p-> irem(p, 40) in {7, 19, 23} and andmap(isprime, [p, (p-1)/2]):
    select(q, [$1..10000])[];  # Alois P. Heinz, Oct 31 2023
  • Mathematica
    Select[Prime[Range[1000]], MatchQ[Mod[#, 40], 7|19|23] && PrimeQ[(#-1)/2]&] (* Jean-François Alcover, Feb 07 2016 *)
  • PARI
    is(n)=my(k=n%40); (k==7||k==19||k==23) && isprime(n\2) && isprime(n) \\ Charles R Greathouse IV, Nov 20 2014

Formula

a(n) = 2*A000355(n)+1. - Reinhard Zumkeller, Feb 10 2009

Extensions

More terms from Reinhard Zumkeller, Feb 10 2009

A007349 Primes with both 10 and -10 as primitive root.

Original entry on oeis.org

17, 29, 61, 97, 109, 113, 149, 181, 193, 229, 233, 257, 269, 313, 337, 389, 433, 461, 509, 541, 577, 593, 701, 709, 821, 857, 937, 941, 953, 977, 1021, 1033, 1069, 1097, 1109, 1153, 1181, 1193, 1217, 1229, 1297, 1301, 1381, 1429, 1433, 1549, 1553, 1621, 1697, 1709, 1741, 1777, 1789, 1861, 1873, 1913, 1949
Offset: 1

Views

Author

Keywords

Comments

Intersection of A006883 and A002144. - Davide Rotondo, May 21 2025

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 864.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    pr=10; Select[Prime[Range[200]], MultiplicativeOrder[pr, # ] == MultiplicativeOrder[-pr, # ] == #-1 &]
    Select[Prime[Range[5,200]],PrimitiveRoot[#,10]==10&&PrimitiveRoot[#,#-10] == #-10&] (* Harvey P. Dale, Oct 10 2019 *)
  • PARI
    forprime(p=11,2000,if(znorder(Mod(10,p))==p-1&&znorder(Mod(-10,p))==p-1,print1(p,", "))); \\ Joerg Arndt, May 21 2025

A221982 Primes p == 2 (mod 5) for which 4*p+1 is also prime.

Original entry on oeis.org

7, 37, 67, 97, 127, 277, 307, 487, 577, 727, 997, 1087, 1297, 1327, 1567, 1597, 1777, 1987, 2017, 2437, 2647, 2677, 2767, 2887, 3037, 3067, 3307, 3457, 3637, 3907, 4057, 4297, 4447, 4567, 4987, 5197, 5527, 5557, 6007, 6247, 6337, 6367, 6397, 6547, 6577, 7027, 7057, 7237, 7417, 7507, 7717, 7867
Offset: 1

Views

Author

Jonathan Sondow, Feb 02 2013

Keywords

Comments

The corresponding primes 4*p+1 are Chebyshev's subsequence A221981 of the primes with primitive root 10.

Examples

			7 is a member because 7 == 2 (mod 5) and 29 = 4*7 + 1 are both prime.
		

References

  • P. L. Chebyshev, Theory of congruences. Elements of number theory, Chelsea, 1972, p. 306.
  • R. K. Guy, Unsolved Problems in Number Theory, F9.

Crossrefs

Programs

  • Maple
    A221982:=proc(q)
    local n;
    for n from 1 to q do
    if isprime(n) and isprime(4*n+1) and (n mod 5)=2 then print(n) fi; od; end:
    A221982 (10000); # Paolo P. Lava, Feb 12 2013
  • Mathematica
    Select[ Prime[ Range[1000]], Mod[#, 5] == 2 && PrimeQ[4 # + 1] &]

Formula

a(n) = (A221981(n) - 1)/4.

A056055 Integers k > 1 such that the decimal expansion of 1/k contains k as a string. (If the decimal expansion terminates, trailing zeros do not count.)

Original entry on oeis.org

3, 6, 7, 14, 17, 28, 58, 59, 83, 86, 87, 89, 97, 118, 167, 197, 228, 281, 313, 316, 339, 367, 379, 383, 456, 458, 469, 529, 541, 543, 569, 577, 587, 593, 607, 618, 626, 629, 647, 669, 673, 677, 678, 683, 687, 701, 709, 719, 722, 727, 729, 767, 771, 772, 778
Offset: 1

Views

Author

Ulrich Schimke (ulrschimke(AT)aol.com)

Keywords

Comments

The sequence is probably infinite, since long-period primes (cf. A006883) especially with high first digit are likely candidates, but is there a proof? Does any k with finite expansion of 1/k (i.e., k = 2^j * 5^m) occur?

Examples

			118 is a term since 1/118 = 0.00847457627118... contains "118".
100 is not a term because 1/100 = 0.01 does not contain "100" (0.0100 does not count).
		

A291943 a(0)=0; for n>0, a(n) = (2n)-th digit after the decimal point in the decimal expansion of 1/(2n+1).

Original entry on oeis.org

0, 3, 0, 7, 1, 9, 3, 6, 7, 1, 4, 3, 0, 3, 1, 9, 3, 5, 7, 2, 9, 3, 2, 7, 8, 1, 3, 1, 1, 1, 9, 1, 3, 7, 1, 9, 3, 3, 9, 1, 7, 3, 7, 1, 1, 9, 1, 5, 7, 1, 9, 3, 0, 7, 1, 0, 3, 6, 0, 0, 8, 0, 0, 7, 0, 9, 8, 0, 7, 1, 0, 9, 8, 4, 1, 9, 4, 4, 7, 0, 6, 3, 0, 7, 3, 5, 3, 4, 0, 1, 9, 0, 4, 5, 0, 9, 3, 0, 7, 1
Offset: 0

Views

Author

Marco Matosic, Sep 06 2017

Keywords

Examples

			a(3)=7 since we want the sixth decimal digit of 1/7.
		

References

  • John H. Conway & Richard K. Guy, The Book of Numbers; Springer 1996.

Crossrefs

Programs

  • Maple
    f:= proc(n) floor(10^(2*n)/(2*n+1)) mod 10 end proc:
    f(0):= 0:
    map(f, [$0..100]); # Robert Israel, Oct 31 2017
  • Mathematica
    f[n_] := Mod[Floor[10^(2n)/(2n +1)], 10]; f[0] = 0; Array[f, 105, 0] (* Robert G. Wilson v, Oct 31 2017 *)

Extensions

Edited by N. J. A. Sloane, Oct 30 2017
a(82) corrected by Robert Israel, Oct 31 2017

A067615 Terms in decimal expansion of 1/(17*2^n) before 5882352941176470 (the period with no leading zeros of 1/17) appears.

Original entry on oeis.org

2941176470, 1470, 7352941176470, 3676470, 18382352941176470, 9191176470, 4595, 22977941176470, 11488970, 57444852941176470, 28722426470, 143612132352941176470, 71806066176470, 359030330882352941176470
Offset: 1

Views

Author

Benoit Cloitre, Feb 01 2002; revised Dec 11, 2004

Keywords

Examples

			Example: 1/(17*2^3) = 0.007352941176470(5882352941176470...) where 5882352941176470 is the period with no leading zero of 1/17 hence a(3)= 7352941176470
		

Crossrefs

Previous Showing 11-20 of 26 results. Next