cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 47 results. Next

A306685 Composite squarefree numbers k such that k^2-1 is divisible by p-1 and p+1, where p are all the prime factors of k.

Original entry on oeis.org

35, 1189, 3059, 6479, 8569, 30889, 39689, 51271, 84419, 133399, 272251, 321265, 430199, 544159, 564719, 569449, 585311, 608399, 1033241, 1212751, 1930499, 3131029, 7056721, 7110179, 7639919, 8740601, 11255201, 15857855, 17966519, 18996769, 22427999, 32871761, 34966009
Offset: 1

Views

Author

Paolo P. Lava, Mar 05 2019

Keywords

Examples

			Prime factors of 35 are 5, 7 and 35^2-1 = 1224, 1124/4 = 306, 1124/6 = 204, 1124/8 = 153.
Prime factors of 1189 are 29, 41 and 1189^2-1 = 1413720, 1413720/28 = 50490, 1413720/30 = 47124, 1413720/40 = 35343, 1413720/42 = 33660.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,k,ok,n; for n from 2 to q do
    if not isprime(n) and issqrfree(n) then a:=factorset(n); ok:=1;
    for k from 1 to nops(a) do if frac((n^2-1)/(a[k]+1))>0 or frac((n^2-1)/(a[k]-1))>0 then ok:=0; break; fi; od; if ok=1 then print(n); fi; fi; od; end: P(10^9);
  • Mathematica
    csfQ[n_]:=CompositeQ[n]&&SquareFreeQ[n]&&Union[Mod[n^2-1,Flatten[{#+1, #-1}&/@ FactorInteger[n][[All,1]]]]]=={0}; Select[Range[35*10^6],csfQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 07 2020 *)
  • PARI
    isok(n) = {if (issquarefree(n) && !isprime(n) && (n>1), my(f = factor(n)[,1], x = n^2-1); for (k=1, #f, if ((x % (f[k]-1)) || (x % (f[k]+1)), return (0));); return (1);); return (0);} \\ Michel Marcus, Mar 12 2019

Extensions

More terms from Giovanni Resta, Mar 06 2019

A329948 Carmichael numbers m that have at least 3 prime factors p such that p+1 | m+1.

Original entry on oeis.org

9857524690572481, 33439671284716801, 96653613831890401, 270136961300544031, 528096456788419441, 650643395658753601, 710238404427321601, 1822922951416158241, 4011563714063821201, 4525693104167627041, 4631812281009523441, 7049793086137296001, 8605736094003523201, 10449416165574628801, 11175581620177915681, 12746447178170148001, 12769123623410580481, 17705945296667070001
Offset: 1

Views

Author

Daniel Suteu, Nov 25 2019

Keywords

Comments

It is not known whether any Carmichael number (A002997) is also Lucas-Carmichael number (A006972). If such a number exists, then it would be a term of this sequence.

Examples

			m = 9857524690572481 is a term because it is a Carmichael number and it has at least 3 prime factors p, {13, 61, 433}, such that p+1 | m+1.
		

Crossrefs

Programs

A202160 a(n) = smallest k having at least five prime divisors d such that (d + n) | (k + n).

Original entry on oeis.org

588455, 179998, 460317, 6265805, 1236235, 287274, 949025, 1436932, 794871, 2013650, 3797365, 1169688, 3739827, 1587586, 6872565, 7706270, 1529983, 7351242, 2528045, 5247970, 487179, 10920965, 1316497, 121894476, 1404455, 5814874, 12223653, 2260412, 8022531
Offset: 1

Views

Author

Michel Lagneau, Dec 13 2011

Keywords

Comments

The sequence of numbers k composite and squarefree, prime p | k ==> p+n | k+n is given by A029591 (least quasi-Carmichael number of order -n).
If k is squarefree, for n = 1, we obtain Lucas-Carmichael numbers: A006972.
In this sequence, the majority of terms are not squarefree.

Examples

			a(3) = 460317 because the prime divisors of 460317 are 3, 11, 13, 29, 37  =>
(3 + 3) | (460317 + 3) = 460320 = 6*76720;
(11 + 3) | 460320 = 14*32880;
(13 + 3) | 460320 = 16*28770;
(29+3)  |  460320 = 32*14385;
(37+3) | 460320 = 40*11508.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 23 do:i:=0:for k from 1 to 10^8 while(i=0) do:x:=factorset(k):n1:=nops(x):y:=k+n: j:=0:for m from 1 to n1 do:if  n1>=2 and irem(y,x[m]+n)=0 then j:=j+1:else fi:od:if j>4 then i:=1: printf ( "%d %d \n",n,k):else fi:od:od:
  • Mathematica
    numd[n_, k_] := Module[{p=FactorInteger[k][[;;,1]], c=0}, Do[If[Divisible[n+k, n+p[[i]]], c++], {i,1,Length[p]}]; c]; a[n_]:=Module[{k=1}, While[numd[n, k] <= 4, k++]; k]; Array[a, 30] (* Amiram Eldar, Sep 09 2019 *)

A217371 Array read by rows in which row n lists the prime factors of the n-th Lucas-Carmichael number.

Original entry on oeis.org

3, 7, 19, 5, 11, 17, 5, 13, 31, 5, 11, 53, 7, 23, 31, 7, 19, 43, 5, 17, 83, 5, 7, 11, 23, 7, 23, 79, 5, 7, 11, 47, 5, 41, 101, 11, 23, 83, 11, 31, 67, 5, 11, 13, 41, 5, 7, 17, 53, 11, 59, 71, 7, 11, 23, 29, 19, 29, 109, 11, 23, 251, 11, 41, 149, 5, 7, 11, 191, 23, 47, 71
Offset: 1

Views

Author

Gerasimov Sergey, Oct 01 2012

Keywords

Examples

			Array begins:
3, 7, 19,
5, 11, 17,
5, 13, 31,
5, 11, 53,
7, 23, 31,
7, 19, 43,
5, 17, 83,
5, 7, 11, 23.
		

Crossrefs

Formula

The n-th row is the A006972(n)-th row of A027746. - Jason Kimberley, Nov 04 2012

A238162 Least common multiple of the prime factors of n, each increased by 1.

Original entry on oeis.org

3, 4, 3, 6, 12, 8, 3, 4, 6, 12, 12, 14, 24, 12, 3, 18, 12, 20, 6, 8, 12, 24, 12, 6, 42, 4, 24, 30, 12, 32, 3, 12, 18, 24, 12, 38, 60, 28, 6, 42, 24, 44, 12, 12, 24, 48, 12, 8, 6, 36, 42, 54, 12, 12, 24, 20, 30, 60, 12, 62, 96, 8, 3, 42, 12, 68, 18, 24, 24, 72, 12, 74, 114, 12, 60, 24, 84, 80, 6, 4, 42, 84, 24, 18, 132, 60, 12, 90, 12, 56, 24, 32, 48, 60, 12, 98, 24, 12, 6
Offset: 2

Views

Author

Joseph L. Pe, Feb 18 2014

Keywords

Comments

If n is prime, then a(n) = n + 1. - Wesley Ivan Hurt, Apr 05 2014
If n is a composite squarefree number and a(n) divides n+1, then n is a Lucas-Carmichael number (A006972). - Daniel Suteu, Oct 02 2022

Examples

			The prime factors of 6 are 2 and 3, which become 3 and 4 when respectively increased by 1, and lcm(3, 4) = 12. Therefore, a(6) = 12.
		

Crossrefs

Cf. A006972.

Programs

  • PARI
    a(n) = my(f=factor(n)); lcm(vector(#f~, k, f[k, 1]+1)); \\ Daniel Suteu, Oct 02 2022

A287119 Squarefree composite numbers n such that p^2 - 1 divides n^2 - 1 for every prime p dividing n.

Original entry on oeis.org

8569, 39689, 321265, 430199, 564719, 585311, 608399, 7056721, 11255201, 17966519, 18996769, 74775791, 75669551, 136209151, 321239359, 446660929, 547674049, 866223359, 1068433631, 1227804929, 1291695119, 2315403649, 2585930689, 7229159729, 7809974369, 8117634239
Offset: 1

Views

Author

Thomas Ordowski, May 20 2017

Keywords

Comments

Such numbers are odd and have at least three prime factors.
Problem: are there infinitely many such numbers?

Crossrefs

Subsequence of A120944.

Programs

  • PARI
    isok(n) = {if (issquarefree(n) && !isprime(n), my(f = factor(n)); for (k=1, #f~, if ((n^2-1) % (f[k,1]^2-1), return (0));); return (1););} \\ Michel Marcus, May 20 2017

Extensions

More terms from Michel Marcus, May 20 2017
a(14)-a(26) from Giovanni Resta, May 20 2017

A292021 Lucas-Carmichael numbers that are congruent to 1 (mod 4).

Original entry on oeis.org

20705, 80189, 120581, 1162349, 7274249, 8734109, 10260809, 14658349, 49412285, 90393029, 105818129, 110066669, 125532329, 256074029, 362868329, 366648281, 395032609, 434886605, 503733257, 558705449, 563601257, 574342145, 640057109, 939989609, 962529749
Offset: 1

Views

Author

Amiram Eldar, Sep 07 2017

Keywords

Comments

Most Lucas-Carmichael numbers are congruent to 3 (mod 4). Of the 9967 numbers less than 10^12 only 198 are congruent to 1 (mod 4).
Analogous to A185321 - Carmichael numbers that are congruent to 3 (mod 4).

Crossrefs

Intersection of A006972 and A016813.

Programs

  • Mathematica
    a=Select[Range[2, 10^6],!PrimeQ[#] && Union[Transpose[FactorInteger[#]][[2]]] == {1} && Union[Mod[# + 1, Transpose[FactorInteger[#]][[1]] + 1]]=={0} &] ;Select[a,Mod[#,4]==1 &] (* after Richard Pinch and Jeffrey Shallit at A006972 *)

A292539 Primes p1 such that p2 = 2p1 + 1 and p3 = p1*p2 - 2 are also primes, so p1*p2*p3 is a Lucas-Carmichael number of the form k^2 - 1.

Original entry on oeis.org

3, 5, 11, 29, 53, 83, 173, 239, 281, 359, 431, 719, 761, 809, 911, 1031, 1103, 1223, 1289, 1451, 1481, 1511, 1559, 1931, 2069, 2339, 2351, 2393, 2693, 2699, 2819, 2969, 3359, 3491, 3539, 3851, 4019, 4211, 4409, 5039, 6113, 6269, 6329, 6491, 6521, 6551, 6581
Offset: 1

Views

Author

Amiram Eldar, Sep 18 2017

Keywords

Comments

All the primes, except the first, are of the form p1 = 6k - 1, p2 = 12k - 1, p3 = 72k^2 - 18k - 1, with k = 1, 2, 5, 9, 14, 29, 40, 47, 60, 72, 120, 127, 135, 152, 172, 184, ...
The generated Lucas-Carmichael numbers are 399, 2915, 63503, 2924099, 32148899, 192099599, 3603600899, 13105670399, 25027872803, ...
Subsequence of A005384 (Sophie Germain primes).

Examples

			p1 = 3 is in the sequence since with p2 = 2*3 + 1 = 7 and p3 = 3*7 - 2 = 19 they are all primes. 3*7*19 = 399 is a Lucas-Carmichael number.
		

Crossrefs

Programs

  • Mathematica
    aQ[n_] := AllTrue[{n, 2n+1, 2 n^2+n-2}, PrimeQ]; Select[Range[10^3], aQ]
    Select[Prime[Range[1000]],AllTrue[{2#+1,#(2#+1)-2},PrimeQ]&] (* Harvey P. Dale, Aug 16 2024 *)
  • PARI
    is(n) = if(!ispseudoprime(n), return(0), my(p=2*n+1); if(!ispseudoprime(p), return(0), if(ispseudoprime(n*p-2), return(1)))); 0 \\ Felix Fröhlich, Sep 18 2017

A300959 Number of prime factors of the n-th Lucas-Carmichael number.

Original entry on oeis.org

3, 3, 3, 3, 3, 3, 3, 4, 3, 4, 3, 3, 3, 4, 4, 3, 4, 3, 3, 3, 4, 3, 3, 4, 3, 3, 3, 4, 3, 4, 3, 3, 4, 4, 4, 3, 3, 4, 3, 4, 4, 3, 4, 3, 5, 4, 3, 3, 3, 3, 4, 3, 3, 4, 3, 4, 4, 3, 3, 3, 5, 4, 4, 3, 3, 4, 3, 4, 3, 3, 4, 4, 4, 3, 3, 4, 4, 3, 4, 4, 4, 4, 3, 5, 3, 4, 3
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Mar 17 2018

Keywords

Comments

The number of prime factors is always >= 3.

Crossrefs

Cf. A006972 (Lucas-Carmichael numbers).
Cf. A216925, A216926, A216927, A217002, A217003, A217091 (Lucas-Carmichael numbers with 3 to 8 prime factors).
Cf. A216928 (Least Lucas-Carmichael number with n prime factors).

Programs

  • PARI
    islc(n)=my(f=factor(n)); for(i=1, #f[, 1], if((n+1)%(f[i, 1]+1) || f[i, 2]>1, return(0))); #f[, 1]>1; \\ from A006972
    lista(nn) = for (n=1, nn, if (islc(n), print1(omega(n), ", "))); \\ Michel Marcus, Mar 17 2018

Formula

a(n) = A001221(A006972(n)).

A306723 Composite squarefree numbers k such that k^2+1 is divisible by p-1, where p are all the prime factors of k.

Original entry on oeis.org

33, 36003, 426747, 220067817
Offset: 1

Views

Author

Paolo P. Lava, Mar 06 2019

Keywords

Comments

Tested up to 3*10^10. - Giovanni Resta, Mar 06 2019

Examples

			Prime factors of 33 are 3, 11 and 33^2+1 = 1090, 1090/2 = 545, 1090/10 = 109.
Prime factors of 220067817 are 3, 59, 131, 9491 and 220067817^2+1 = 48429844079145490, 48429844079145490/2 = 24214922039572745, 48429844079145490/58 = 834997311709405, 48429844079145490/130 = 372537262147273, 48429844079145490/9490 = 5103250166401.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,k,ok,n;
    for n from 1 to q do if not isprime(n) and issqrfree(n) then a:=factorset(n); ok:=1; for k from 1 to nops(a) do if frac((n^2+1)/(a[k]+1))>0 then ok:=0; break; fi; od; if ok=1 then print(n); fi; fi; od; end: P(10^20);
  • PARI
    isok(n) = {if (issquarefree(n) && !isprime(n) && (n>1), my(f = factor(n)[,1], x = n^2+1); for (k=1, #f, if ((x % (f[k]-1)), return (0));); return (1);); return (0);} \\ Michel Marcus, Mar 12 2019

Extensions

a(4) from Giovanni Resta, Mar 06 2019
Previous Showing 31-40 of 47 results. Next