cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 32 results. Next

A001494 Numbers k such that phi(k) = phi(k+2).

Original entry on oeis.org

4, 7, 8, 10, 26, 32, 70, 74, 122, 146, 308, 314, 386, 512, 554, 572, 626, 635, 728, 794, 842, 910, 914, 1015, 1082, 1226, 1322, 1330, 1346, 1466, 1514, 1608, 1754, 1994, 2132, 2170, 2186, 2306, 2402, 2426, 2474, 2590, 2642, 2695, 2762, 2906, 3242, 3314
Offset: 1

Views

Author

Keywords

Comments

If p and 2p-1 are odd primes then 2*(2p-1) is a solution of the equation. Other terms (7,8,32,70,...) are not of this form.
There are 506764111 terms under 10^12. - Jud McCranie, Feb 13 2012
If 2^(2^m) + 1 is a Fermat prime in A019434, so, m = 0, 1, 2, 3, 4, then k = 2^(2^m + 1) is a term; this subsequence consists of {4, 8, 32, 512, 131072} and, in this case, phi(k) = phi(k+2) = 2^(2^m). - Bernard Schott, Apr 22 2022

References

  • D. M. Burton, Elementary Number Theory, section 7-2.
  • R. K. Guy, Unsolved Problems Number Theory, Sect. B36.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

A000010(a(n)) = A000010(a(n) + 2). - Reinhard Zumkeller, Feb 08 2013

Extensions

More terms from Jud McCranie, Dec 24 1999

A007366 Numbers k such that phi(x) = k has exactly 2 solutions.

Original entry on oeis.org

1, 10, 22, 28, 30, 46, 52, 54, 58, 66, 70, 78, 82, 102, 106, 110, 126, 130, 136, 138, 148, 150, 166, 172, 178, 190, 196, 198, 210, 222, 226, 228, 238, 250, 262, 268, 270, 282, 292, 294, 306, 310, 316, 330, 342, 346, 358, 366, 372, 378, 382, 388, 418, 430, 438
Offset: 1

Views

Author

Keywords

Comments

Contains {2*3^(6k+1): k >= 1} as a subsequence. This is the simplest proof for the infinity of these numbers (see Sierpiński, Exercise 12, p. 237). - Franz Vrabec, Aug 21 2021
The smaller of the solutions to phi(x) = a(n) is given by A271983(n). It is conjectured that the larger solution is 2*A271983(n); or equivalently, all terms in A271983 are odd. - Jianing Song, Nov 08 2022

Examples

			10 = phi(11) = phi(22).
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • Wacław Sierpiński, Elementary Theory of Numbers, Warszawa, 1964.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Number of solutions: A007617 (0), this sequence (2), A007367 (3), A060667 (4), A060668 (5), A060669 (6), A060670 (7), A060671 (8), A060672 (9), A060673 (10), A060674 (11), A060675 (12).

Programs

  • Maple
    select(nops@numtheory:-invphi=2, [$1..1000]); # Robert Israel, Dec 20 2017
  • Mathematica
    a = Table[ 0, {500} ]; Do[ p = EulerPhi[ n ]; If[ p < 501, a[ [ p ] ]++ ], {n, 1, 500} ]; Select[ Range[ 500 ], a[ [ # ] ] == 2 & ]
    (* Second program: *)
    With[{nn = 1325}, TakeWhile[Union@ Select[KeyValueMap[{#1, Length@ #2} &, PositionIndex@ Array[EulerPhi, nn]], Last@ # == 2 &][[All, 1]], # < nn/3 &] ] (* Michael De Vlieger, Dec 20 2017 *)
  • PARI
    is(k) = invphiNum(k) == 2 \\ Amiram Eldar, Nov 16 2024, using Max Alekseyev's invphi.gp

Formula

#({phi^(-1)(a(n))}) = 2. - Torlach Rush, Dec 22 2017

A007367 Numbers k such that phi(x) = k has exactly 3 solutions.

Original entry on oeis.org

2, 44, 56, 92, 104, 116, 140, 164, 204, 212, 260, 296, 332, 344, 356, 380, 392, 444, 452, 476, 524, 536, 564, 584, 588, 620, 632, 684, 692, 716, 744, 764, 776, 836, 860, 884, 932, 956, 980, 1004, 1016, 1112, 1124, 1136, 1172, 1196, 1284, 1292, 1304
Offset: 1

Views

Author

Keywords

Comments

From Torlach Rush, Jul 23 2018: (Start)
For known terms:
- The greatest common divisor of the three solutions is the distance of the middle solution from the least solution and is half the distance of the middle solution to the largest solution.
- If the number of distinct prime factors of k equals the number of solutions of k = phi(x), then the greatest common divisor of the solutions is the least solution divided by the number of solutions.
- Except for a(1), if the largest prime factor is the same for all solutions and is equal to the greatest common divisor of all solutions then the distance from a(n) to the least solution is gcd({k: phi(k) = a(n)}) + 2. (End)
By Ford's theorem on Euler totient function, this sequence is infinite. - Jianing Song, Jul 18 2018

Examples

			phi(69) = phi(92) = phi(138) = 44, so 44 is a term.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • Jean-Marie De Koninck, Ces nombres qui nous fascinent, Entry 44, p. 17, Ellipses, Paris, 2008.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Number of solutions: A007617 (0), A007366 (2), this sequence (3), A060667 (4), A060668 (5), A060669 (6), A060670 (7), A060671 (8), A060672 (9), A060673 (10), A060674 (11), A060675 (12).

Programs

  • Haskell
    a007367 n = a007367_list !! (n-1)
    a007367_list = map fst $
                   filter ((== 3) . snd) $ zip a002202_list a058277_list
    -- Reinhard Zumkeller, Nov 25 2015
    
  • Mathematica
    a = Table[ 0, {1500} ]; Do[ p = EulerPhi[ n ]; If[ p < 1501, a[ [ p ] ]++ ], {n, 1, 1500} ]; Select[ Range[ 1500 ], a[ [ # ] ] == 3 & ]
    Take[Select[Tally[EulerPhi[Range[50000]]],#[[2]]==3&][[All,1]],50]//Sort (* Harvey P. Dale, Apr 02 2018 *)
  • PARI
    is(k) = invphiNum(k) == 3 \\ Amiram Eldar, Nov 17 2024, using Max Alekseyev's invphi.gp

A007371 Numbers k such that sigma(x) = k has exactly 2 solutions.

Original entry on oeis.org

12, 18, 31, 32, 54, 56, 80, 98, 104, 108, 114, 124, 126, 128, 132, 140, 152, 156, 182, 186, 210, 264, 272, 280, 308, 320, 342, 378, 390, 392, 399, 403, 408, 416, 440, 444, 448, 492, 522, 532, 570, 572, 594, 608, 630, 632, 726, 762, 770, 774, 780, 784, 800
Offset: 1

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000203.
Number of solutions: A007369 (0), A007370 (1), this sequence (2), A007372 (3), A060660 (4), A060661 (5), A060662 (6), A060663 (7), A060664 (8), A060665 (9), A060666 (10), A060678 (11), A060676 (12).

Programs

  • Mathematica
    a = Table[ 0, {750} ]; Do[ s = DivisorSigma[ 1, n ]; If[ s < 751, a[ [ s ] ]++ ], {n, 1, 750} ]; Select[ Range[ 750 ], a[ [ # ] ] == 2 & ]
  • PARI
    is(n)=sum(k=1,n,sigma(k)==n)==2 \\ Charles R Greathouse IV, Mar 09 2014
    
  • PARI
    is(k) = invsigmaNum(k) == 2 \\ Amiram Eldar, Nov 17 2024, using Max Alekseyev's invphi.gp

A007372 Numbers k such that sigma(x) = k has exactly 3 solutions.

Original entry on oeis.org

24, 42, 48, 60, 84, 90, 224, 228, 234, 248, 270, 294, 324, 450, 468, 528, 558, 620, 640, 660, 810, 882, 888, 896, 968, 972, 1020, 1050, 1104, 1116, 1140, 1216, 1232, 1240, 1274, 1332, 1392, 1400, 1452, 1456, 1464, 1482, 1524, 1530, 1600, 1694, 1716, 1760
Offset: 1

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000203.
Number of solutions: A007369 (0), A007370 (1), A007371 (2), this sequence (3), A060660 (4), A060661 (5), A060662 (6), A060663 (7), A060664 (8), A060665 (9), A060666 (10), A060678 (11), A060676 (12).

Programs

  • Mathematica
    a = Table[ 0, {2500} ]; Do[ s = DivisorSigma[ 1, n ]; If[ s < 2501, a[ [ s ] ]++ ], {n, 1, 2500} ]; Select[ Range[ 2500 ], a[ [ # ] ] == 3 & ]
  • PARI
    is(n)=sum(k=1,n,sigma(k)==n)==3 \\ Charles R Greathouse IV, Mar 09 2014
    
  • PARI
    is(k) = invsigmaNum(k) == 3 \\ Amiram Eldar, Nov 17 2024, using Max Alekseyev's invphi.gp

A179188 Numbers n such that phi(n) = phi(n+6), with Euler's totient function phi=A000010.

Original entry on oeis.org

24, 34, 36, 39, 43, 44, 57, 72, 78, 82, 84, 93, 96, 108, 111, 146, 178, 201, 216, 222, 225, 226, 228, 306, 327, 364, 366, 381, 399, 417, 432, 438, 442, 466, 471, 482, 516, 527, 540, 543, 562, 576, 597, 610, 626, 633, 648, 706, 714, 732, 738, 802, 818, 866, 898, 912, 921, 924, 942, 948, 972, 1011
Offset: 1

Views

Author

M. F. Hasler, Jan 05 2011

Keywords

Comments

There are 1385502728 terms under 10^12. - Jud McCranie, Feb 13 2012

Crossrefs

Programs

Formula

A000010(a(n)) = A000010(a(n)+6).

A179186 Numbers k such that phi(k) = phi(k+4), with Euler's totient function phi = A000010.

Original entry on oeis.org

8, 14, 16, 20, 35, 52, 64, 91, 140, 148, 244, 292, 403, 455, 616, 628, 772, 801, 1011, 1024, 1108, 1144, 1252, 1270, 1295, 1456, 1588, 1684, 1820, 1828, 2030, 2164, 2452, 2623, 2644, 2660, 2692, 2932, 3028, 3216, 3321, 3508, 3988, 4264, 4340, 4372, 4612, 4804, 4852, 4948
Offset: 1

Views

Author

M. F. Hasler, Jan 05 2011

Keywords

Comments

Is there some k > 5 such that phi(k) = phi(k+3)?
None up to 500000. - Harvey P. Dale, Feb 16 2011
No further solutions to the phi(k) = phi(k+3) problem less than 10^12. On the other hand, this sequence has 267797240 terms under 10^12. - Jud McCranie, Feb 13 2012
No reason is known that would prevent other solutions of phi(k) = phi(k+3), see Graham, Holt, & Pomerance. - Jud McCranie, Jan 03 2013
If a(n) is even then a(n)/2 is in A001494 - see comment at A217139. - Jud McCranie, Dec 31 2012

References

  • S. W. Graham, J. J. Holt, and C. Pomerance, "On the solutions to phi(n)=phi(n+k)", Number Theory in Progress, Proc. Intern. Conf. in Honor of 60th Birthday of A. Schinzel, Poland, 1997. Walter de Gruyter, 1999, pp. 867-82.

Crossrefs

Programs

  • Magma
    [n: n in [1..5000] | EulerPhi(n) eq EulerPhi(n+4)]; // Vincenzo Librandi, Sep 08 2016
  • Mathematica
    Select[Range[5000],EulerPhi[#]==EulerPhi[#+4]&]  (* Harvey P. Dale, Feb 16 2011 *)
    SequencePosition[EulerPhi[Range[5000]],{x_,,,_,x_}][[;;,1]] (* Harvey P. Dale, Sep 12 2024 *)
  • PARI
    {op=vector(N=4); for( n=1,1e4,if( op[n%N+1]+0==op[n%N+1]=eulerphi(n),print1(n-N,",")))}
    

A217139 Numbers n such that phi(n) = phi(n+12), with Euler's totient function phi = A000010.

Original entry on oeis.org

48, 68, 72, 78, 86, 88, 114, 143, 144, 156, 157, 164, 168, 186, 192, 203, 216, 222, 247, 273, 292, 356, 402, 432, 444, 450, 452, 456, 612, 654, 728, 732, 762, 798, 834, 864, 876, 884, 932, 942, 964, 1032, 1054, 1080, 1086, 1124, 1147, 1152, 1194, 1209, 1220
Offset: 1

Views

Author

Michel Marcus, Sep 27 2012

Keywords

Comments

Most of numbers n in this sequence are divisible by 2, and it appears that n/2 belongs to A179188. The other ones are listed in sequence A217141.
Proof of the comment: If n is even and not a multiple of 4 then phi(n)=phi(n/2). If n is a multiple of 4 then phi(n)=2 * phi(n/2). So when k is a multiple of 4 and phi(n)=phi(n+k), then phi(n/2)=phi(n/2+k/2). QED. This also applies to A179186, A179202. - Jud McCranie, Dec 30 2012

Crossrefs

Programs

  • Magma
    [n: n in [1..3000] | EulerPhi(n) eq EulerPhi(n+12)]; // Vincenzo Librandi, Sep 08 2016
  • Mathematica
    Select[Range[1, 5000], EulerPhi[#] == EulerPhi[# + 12] &] (* Vincenzo Librandi, Jun 24 2014 *)
  • PARI
    {op=vector(N=12); for( n=1, 1e4, if( op[n%N+1]+0==op[n%N+1]=eulerphi(n), print1(n-N, ", ")))}
    

A179187 Numbers n such that phi(n)=phi(n+5), with Euler's totient function phi=A000010.

Original entry on oeis.org

5, 9, 15, 21, 15556, 21016, 25930, 25935, 27027, 36304, 46683, 129675, 266128, 307923, 329175, 430348, 503139, 636400, 684411, 812170, 1014778, 1252713, 1777545, 1871788, 1892452, 1911987, 2622160, 2629930, 2731360, 2947035, 3397480, 4200100, 5451537
Offset: 1

Views

Author

M. F. Hasler, Jan 05 2011

Keywords

Comments

There are only 43 terms below 10^7, and 1843 terms below 10^12. [Jud McCranie, Feb 13 2012]

Crossrefs

Programs

Formula

A000010(a(n)) = A000010(a(n)+5).

A007365 Smallest k such that sigma(n+k) = sigma(k).

Original entry on oeis.org

1, 14, 33, 382, 51, 6, 20, 10, 15, 14, 21, 28, 35, 182, 24, 26, 30, 142, 40, 34, 42, 20, 57, 135, 70, 30, 99, 42, 66, 406, 88, 56, 60, 54, 93, 24, 105, 248, 147, 44, 63, 30, 80, 435, 114, 52, 196, 310, 140, 40, 105, 92, 160, 66, 120, 140, 105, 88, 352, 154
Offset: 0

Views

Author

Keywords

Comments

If p > 3 is prime, a(p) <= 14*p. - Robert Israel, Feb 21 2020

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A065932, A065933. sigma(x)=A000203(x) is the sum of the divisors of x.

Programs

  • Maple
    N:= 1000: # to get all terms before the first with n + a(n) > N
    S:= map(numtheory:-sigma, [$1..N]):
    Res:= NULL:
    found:= true:
    for n from 1 while found do
    found:= false;
    for k from 1 to N-n do
       if S[k] = S[k+n] then
         Res:= Res, k; found:= true; break;
       fi
    od;
    od:
    Res; # Robert Israel, Feb 21 2020
  • Mathematica
    sk[n_]:=Module[{k=1},While[DivisorSigma[1,k]!=DivisorSigma[1,n+k], k++];k]; Array[sk,60,0] (* Harvey P. Dale, Oct 10 2012 *)
  • PARI
    A007365(m)= {local(k,n); for(k=1,m,n=1; while(sigma(n)!=sigma(n+k), n++); print1(n,","))} \\ Klaus Brockhaus
Previous Showing 11-20 of 32 results. Next