A260464
Number of chains in the poset of even-sized subsets of {1,2,...,n} ordered by inclusion.
Original entry on oeis.org
1, 1, 3, 7, 27, 91, 483, 2227, 15627, 92491, 810963, 5866147, 61720827, 527635291, 6476783043, 63886537267, 896245131627, 10019232896491, 158126425788723, 1975680877259587, 34645295464104027, 478434297205284091, 9228741116739540003, 139581878985127217107
Offset: 0
a(3)=7 because there are 4 chains of length zero: {{}}; {{1,2}}; {{1,3}}; {{2,3}} and there are 3 chains of length one: {{},{1,2}}; {{},{1,3}}; {{},{2,3}}.
-
nn = 20; c = Cosh[x] - 1; s = Sinh[x];Range[0, nn]! CoefficientList[Series[(c^2 + 2 c + 1 + s c + s)/(1 - c), {x, 0, nn}], x]
-
my(x='x+O('x^33), c = cosh(x)-1, s=sinh(x)); Vec(serlaplace( (c^2 + 2*c + 1 + s*c + s)/(1 - c) )) \\ Joerg Arndt, Jul 27 2015
A260504
Number of chains in the poset of all odd-sized subsets of {1,2,...,n} ordered by inclusion.
Original entry on oeis.org
0, 1, 2, 7, 20, 91, 362, 2227, 11720, 92491, 608222, 5866147, 46290620, 527635291, 4857587282, 63886537267, 672183848720, 10019232896491, 118594819341542, 1975680877259587, 25983971598078020, 478434297205284091, 6921555837554655002, 139581878985127217107
Offset: 0
a(4) = 20 because there are C(4,1) + C(4,3) = 8 chains of length zero (these are the odd-sized subsets of {1,2,3,4}). There are 12 chains of length one: {{1},{1,2,3}}; {{1},{1,2,4}}; {{1},{1,3,4}}; {{2},{1,2,3}}; {{2},{1,2,4}}; {{2},{2,3,4}}; {{3},{1,2,3}}; {{3},{1,3,4}}; {{3},{2,3,4}}; {{4},{1,2,4}}; {{4},{1,3,4}}; {{4},{2,3,4}}.
-
# Assuming a(0) = 1:
p := proc(n, z) option remember; local k; if n = 0 then 1 else
normal(add(`if`(k mod 2 = 1, 0, binomial(n, k)*p(k, 0)*(z+1)^(n-k-1)), k=0..n-1))
fi end: A260504 := n -> p(n, 1): seq(A260504(n), n = 0..23); # Peter Luschny, Jun 19 2023
-
nn = 20; c=Cosh[x]-1;s=Sinh[x];Range[0,nn]!CoefficientList[Series[(s^2 + s c + s)/(1 - c), {x, 0, nn}], x]
A292915
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(k*x)/(2 - exp(x)).
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 1, 3, 6, 13, 1, 4, 11, 26, 75, 1, 5, 18, 51, 150, 541, 1, 6, 27, 94, 299, 1082, 4683, 1, 7, 38, 161, 582, 2163, 9366, 47293, 1, 8, 51, 258, 1083, 4294, 18731, 94586, 545835, 1, 9, 66, 391, 1910, 8345, 37398, 189171, 1091670, 7087261, 1, 10, 83, 566, 3195, 15666, 74067, 378214, 2183339, 14174522, 102247563
Offset: 0
E.g.f. of column k: A_k(x) = 1 + (k + 1)*x/1! + (k^2 + 2*k + 3)*x^2/2! + (k^3 + 3*k^2 + 9*k + 13)*x^3/3! + (k^4 + 4*k^3 + 18*k^2 + 52*k + 75) x^4/4! + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, ...
3, 6, 11, 18, 27, 38, ...
13, 26, 51, 94, 161, 258, ...
75, 150, 299, 582, 1083, 1910, ...
541, 1082, 2163, 4294, 8345, 15666, ...
-
R:=PowerSeriesRing(Rationals(), 50);
T:= func< n,k | Coefficient(R!(Laplace( Exp(k*x)/(2-Exp(x)) )), n) >;
A292915:= func< n,k | T(k,n-k) >;
[A292915(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 12 2024
-
A:= proc(n, k) option remember; k^n +add(
binomial(n, j)*A(j, k), j=0..n-1)
end:
seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Sep 27 2017
-
Table[Function[k, n! SeriesCoefficient[Exp[k x]/(2 - Exp[x]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
Table[Function[k, HurwitzLerchPhi[1/2, -n, k]/2][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
-
a000670(n) = sum(k=0, n, k!*stirling(n, k, 2));
A(n, k) = 2^k*a000670(n)-sum(j=0, k-1, 2^j*(k-1-j)^n); \\ Seiichi Manyama, Dec 25 2023
-
def T(n,k): return factorial(n)*( exp(k*x)/(2-exp(x)) ).series(x, n+1).list()[n]
def A292915(n,k): return T(k,n-k)
flatten([[A292915(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jun 12 2024
A107954
Number of chains in the power set lattice, or the number of fuzzy subsets of an (n+4)-element set X_(n+4) with specification n elements of one kind, 3 elements of another and 1 of yet another kind.
Original entry on oeis.org
79, 527, 2415, 9263, 31871, 101759, 307455, 890111, 2490367, 6774783, 18001919, 46886911, 120029183, 302678015, 753205247, 1852375039, 4507828223, 10866393087, 25970081791, 61583917055, 144997089279, 339159810047
Offset: 0
Venkat Murali (v.murali(AT)ru.ac.za), May 30 2005
a(2) = 8 * ( (16 + 184)/6 + (316 + 370)/3 + 40 ) - 1 = 2415. This is the number of fuzzy subsets of a set of (2+4) elements of which 2 are of one kind, 3 are of another kind and 1 of a kind distinct from the other two.
- V. Murali, On the enumeration of fuzzy subsets of X_(n+4) of specification n^1 3^1 1, Rhodes University JRC-Abstract-Report, In Preparation, 12 pages 2005.
-
a[n_] := 2^n(n^4 + 23n^3 + 158n^2 + 370n + 240)/3 - 1; Table[ a[n], {n, 0, 21}] (* Robert G. Wilson v, May 31 2005 *)
LinearRecurrence[{11,-50,120,-160,112,-32},{79,527,2415,9263,31871,101759},40] (* Harvey P. Dale, Aug 15 2025 *)
A330032
The number of chains of strictly rooted upper triangular or lower triangular matrices of order n.
Original entry on oeis.org
1, 2, 26, 9366, 204495126, 460566381955706, 162249649997008147763642, 12595124129900132067036747870669270, 288398561903310939256721956218813835167026180310, 2510964964470962082968627390938311899485883615067802615950711482
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..28
- S. R. Kannan and Rajesh Kumar Mohapatra, Counting the Number of Non-Equivalent Classes of Fuzzy Matrices Using Combinatorial Techniques, arXiv preprint arXiv:1909.13678 [math.GM], 2019.
- R. B. Nelsen and H. Schmidt, Jr., Chains in power sets, Math. Mag., 64 (1) (1991), 23-31.
- M. Tărnăuceanu, The number of chains of subgroups of a finite elementary abelian p-group, arXiv preprint arXiv:1506.08298 [math.GR], 2015.
Missing term a(6) = 162249649997008147763642 inserted by
Georg Fischer, Jul 15 2024
A365863
a(0) = 1; thereafter a(n) = n*Sum_{k = 0..n-1} binomial(n, k)*(-1)^(1+n+k)*a(k).
Original entry on oeis.org
1, 1, 2, 12, 156, 3380, 108930, 4876242, 289111032, 21916777752, 2067208751790, 237380181141950, 32601704893973556, 5276471519805880836, 993835167745129599162, 215520207875112312124890, 53311353846240820033325040, 14919977169758349265112350256, 4690364757880376663319746737926
Offset: 0
-
a[n_] := a[n] = If[n == 0, 1, n*Sum[Binomial[n, k]*(-1)^(1 + n + k)*a[k], {k, 0, n - 1}]]; Table[a[n], {n, 0, 20}] (* Vaclav Kotesovec, Nov 12 2023 *)
-
a(n) = if(n == 0, 1,sum(k = 0,n-1, n*binomial(n, k)*(-1)^(1+n+k)*a(k)))
A368317
Expansion of e.g.f. exp(4*x) / (2 - exp(x)).
Original entry on oeis.org
1, 5, 27, 161, 1083, 8345, 74067, 754241, 8726283, 113375465, 1635899907, 25961939921, 449464541883, 8429731963385, 170261482711347, 3684531041231201, 85050474868523883, 2085932272336772105, 54168554611721580387, 1484825397108091268081
Offset: 0
-
b(n, t) = sum(k=0, n, t^k*k!*stirling(n, k, 2));
a(n, m=4, t=1) = my(u=1+1/t); u^m*b(n, t)-(1/t)*sum(j=0, m-1, u^j*(m-1-j)^n);
A107955
Number of chains in the power set lattice or the number of fuzzy subsets of an (n+5)-element set X_(n+5) with specification n elements of one kind, 4 elements of another and 1 of yet another kind.
Original entry on oeis.org
191, 1471, 7551, 31871, 119231, 410303, 1327103, 4090623, 12130303, 34842623, 97435647, 266313727, 713637887, 1879523327, 4875091967, 12474187775, 31531728895, 78832992255, 195135799295, 478649778175, 1164351373311
Offset: 0
Venkat Murali (v.murali(AT)ru.ac.za), Jun 01 2005
a(3) = (2^(3+1))*(1/24)*(3^5 + 36 * 3^4 + 431 * 3^3 + 2088 * 3^2 + 3972 * 3 + 2304) - 1 = 31871. This is the number of chains in the power set lattice (which is also the number of fuzzy subsets) of X_(n+5).
- Venkat Murali, On the enumeration of fuzzy subsets of an (n+5)-element set X_(n+5) of specification n^1 4^1 1, Rhodes University JRC-Abstract-Report, In Preparation, 15 pages 2005.
A299404
a(n) = 1 + Sum_{m >= 1} (m + 1)^n/2^(m - 1).
Original entry on oeis.org
3, 7, 23, 103, 599, 4327, 37463, 378343, 4366679, 56698087, 817980503, 12981060583, 224732540759, 4214866787047, 85130743763543, 1842265527822823, 42525237455850839, 1042966136233087207, 27084277306054762583, 742412698554627289063, 21421502369955073624919
Offset: 0
-
Table[1 + LerchPhi[1/2, -n, 2], {n, 0, 20}] (* Vaclav Kotesovec, Apr 17 2018 *)
-
a(n) = 1+ round(suminf(m=1, (m + 1)^n/2^(m - 1)));
A329712
The number of rooted chains in the lattice of (0, 1) matrices of order n.
Original entry on oeis.org
1, 2, 150, 14174522, 10631309363962710, 213394730876951551651166996282, 288398561903310939256721956218813835167026180310, 55313586130829865212025793302979452922870356482030868613037427298852922
Offset: 0
- S. R. Kannan and Rajesh Kumar Mohapatra, Counting the Number of Non-Equivalent Classes of Fuzzy Matrices Using Combinatorial Techniques, arXiv preprint arXiv:1909.13678 [math.GM], 2019.
- V. Murali and B. Makamba, Finite Fuzzy Sets, Int. J. Gen. Syst., Vol. 34 (1) (2005), pp. 61-75.
- R. B. Nelsen and H. Schmidt, Jr., Chains in power sets, Math. Mag., 64 (1) (1991), 23-31.
- M. Tărnăuceanu, The number of chains of subgroups of a finite elementary abelian p-group, arXiv preprint arXiv:1506.08298 [math.GR], 2015.
Comments