cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 321 results. Next

A024657 n written in fractional base 10/2.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 220, 221, 222, 223, 224, 225, 226, 227
Offset: 0

Views

Author

Keywords

Comments

To represent a number in base b, if a digit exceeds b-1, subtract b and carry 1. In fractional base a/b, subtract a and carry b.
Also numbers which are written the same in base 20/2 as in base 10. The sequence consists of numbers which have digits in {0,2,4,6,8} except that the unit digit can be any from {0,1,2,3,4,5,6,7,8,9} - Henry Bottomley, Nov 17 2000

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = If[n == 0, 0, 10 * a[2 * Floor[n/10]] + Mod[n, 10]]; Array[a, 50, 0] (* Amiram Eldar, Aug 02 2025 *)
  • PARI
    a(n) = if(n == 0, 0, 10 * a(n\10 * 2) + n % 10); \\ Amiram Eldar, Aug 02 2025

Formula

a(n) = A118761(n+1) for n < 50. - Reinhard Zumkeller, May 01 2006

A037462 a(n) = Sum_{i = 0..m} d(i)*8^i, where Sum_{i = 0..m} d(i)*4^i is the base 4 representation of n.

Original entry on oeis.org

0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 64, 65, 66, 67, 72, 73, 74, 75, 80, 81, 82, 83, 88, 89, 90, 91, 128, 129, 130, 131, 136, 137, 138, 139, 144, 145, 146, 147, 152, 153, 154, 155, 192, 193, 194, 195, 200, 201, 202, 203, 208, 209, 210
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    seq(n + (1/2)*add(8^k*floor(n/4^k), k = 1..floor(ln(n)/ln(4))), n = 1..100); # Peter Bala, Dec 01 2016
  • Mathematica
    Table[FromDigits[RealDigits[n, 4], 8], {n, 0, 100}]
    (* Clark Kimberling, Aug 14 2012 *)

Formula

From Peter Bala, Dec 01 2016: (Start):
a(n) = n + 1/2*Sum_{k >= 1} 8^k*floor(n/4^k). Cf. A037454, A007091 and A102491.
a(0) = 0; a(n) = 8*a(n/4) if n == 0 (mod 4) else a(n) = a(n-1) + 1. (End)

Extensions

Offset changed to 0 by Clark Kimberling, Aug 14 2012

A083899 Number of divisors of n with largest digit <= 4 (base 10).

Original entry on oeis.org

1, 2, 2, 3, 1, 3, 1, 3, 2, 3, 2, 5, 2, 3, 2, 3, 1, 3, 1, 5, 3, 4, 2, 6, 1, 3, 2, 4, 1, 5, 2, 4, 4, 3, 1, 5, 1, 2, 3, 6, 2, 6, 2, 6, 2, 3, 1, 6, 1, 3, 2, 4, 1, 3, 2, 4, 2, 2, 1, 8, 1, 3, 3, 4, 2, 6, 1, 4, 3, 4, 1, 6, 1, 2, 2, 3, 2, 4, 1, 6, 2, 3, 1, 8, 1, 3, 2, 6, 1, 5, 2, 4, 3, 2, 1, 7, 1, 3, 4, 6, 2, 5, 2, 5, 3
Offset: 1

Views

Author

Reinhard Zumkeller, May 08 2003

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, Max[IntegerDigits[#]] <= 4 &]; Array[a, 100] (* Amiram Eldar, Jan 04 2024 *)

Formula

a(n) = A083898(n) + A083891(n) = A083900(n) - A083892(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} 1/A007091(k) = 3.92521682598923397031... . - Amiram Eldar, Jan 04 2024

A321882 a(n) is the least base b > 1 such that the sum n + n can be computed without carry.

Original entry on oeis.org

2, 3, 5, 3, 3, 4, 5, 5, 6, 3, 3, 5, 3, 3, 6, 7, 4, 4, 8, 8, 4, 4, 7, 7, 7, 5, 5, 3, 3, 9, 3, 3, 5, 10, 10, 5, 3, 3, 6, 3, 3, 10, 6, 6, 6, 11, 11, 11, 6, 6, 5, 5, 5, 12, 13, 5, 5, 5, 7, 7, 5, 5, 5, 7, 4, 4, 7, 8, 4, 4, 7, 7, 6, 6, 6, 8, 14, 15, 6, 6, 4, 3, 3, 8
Offset: 0

Views

Author

Rémy Sigrist, Nov 20 2018

Keywords

Comments

Equivalently, a(n) is the least base b > 1 where:
- twice the greatest digit of n is < b,
- twice the digital sum of n equals the digital sum of twice n.
The sequence is well defined as, for any n > 0, n + n can be computed without carry in base 2*n + 1.
The sequence is unbounded; by contradiction:
- suppose that v = a(n) is the greatest term of the sequence,
- we can assume that v > 2,
- let d be the greatest digit of v!^A000120(n) in base v,
- let k = floor((v-1) / d),
- necessarily a(n + k * (v!^A000120(n))) > v, QED.

Examples

			For n = 42:
- in base 2, 42 + 42 cannot be computed without carry: "101010" + "101010" = "1010100",
- in base 3, 42 + 42 cannot be computed without carry: "1120" + "1120" = "10010",
- in base 4, 42 + 42 cannot be computed without carry: "222" + "222" = "1110",
- in base 5, 42 + 42 cannot be computed without carry: "132" + "132" = "314",
- in base 6, 42 + 42 can be computed without carry: "110" + "110" = "220",
- hence a(42) = 6.
		

Crossrefs

See A319478 for the multiplicative variant.

Programs

  • Mathematica
    Array[Block[{b = 2}, While[2 Max@ IntegerDigits[#, b] >= b, b++]; b] &, 84, 0] (* Michael De Vlieger, Nov 25 2018 *)
  • PARI
    a(n) = for (b=2, oo, if (2*sumdigits(n, b)==sumdigits(n*2, b), return (b)))

Formula

a(n) = 2 iff n = 0.
a(n) = 3 iff n > 0 and n belongs to A005836.
a(n * a(n)) <= a(n).
a(A007091(n)) <= 10 for any n >= 0.

A004688 Fibonacci numbers written in base 5.

Original entry on oeis.org

0, 1, 1, 2, 3, 10, 13, 23, 41, 114, 210, 324, 1034, 1413, 3002, 4420, 12422, 22342, 40314, 113211, 204030, 322241, 1031321, 1404112, 2440433, 4400100, 12341033, 22241133, 40132221, 112423404, 203111130
Offset: 0

Views

Author

Keywords

Comments

Sequence of last digit has period length of A001175(5)=20. Digits are almost evenly distributed. - Carmine Suriano, Mar 30 2012

Crossrefs

Cf. A000045 (Fibonacci), A007091 (numbers in base 5).

Programs

  • Magma
    [Seqint(Intseq(Fibonacci(n),5)): n in [0..50]]; // G. C. Greubel, Oct 09 2018
  • Maple
    read("transforms") :
    A004688 := proc(n)
            convert( combinat[fibonacci](n),base,5) ;
            ListTools[Reverse](%) ;
            digcatL(%) ;
    end proc: # R. J. Mathar, Apr 01 2012
  • Mathematica
    Table[BaseForm[Fibonacci[n],5],{n,1,20,1}] (* Vladimir Joseph Stephan Orlovsky, Jul 23 2008 *)
    FromDigits[IntegerDigits[#, 5]]& / @Fibonacci[Range[0, 50]] (* Vincenzo Librandi, Jun 07 2013 *)
  • PARI
    vector(50, n, n--; fromdigits(digits(fibonacci(n), 5))) \\ G. C. Greubel, Oct 09 2018
    

A032543 Numbers that, when expressed in base 5 and then interpreted in base 10, yield a multiple of the original number.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, 75, 100, 125, 160, 224, 237, 250, 320, 330, 375, 490, 500, 625, 800, 1000, 1120, 1185, 1250, 1600, 1650, 1875, 2450, 2500, 3125, 3800, 4000, 4704, 5000, 5600, 5925, 6250, 7600, 8000, 8250, 9375, 10000, 12250
Offset: 1

Views

Author

Patrick De Geest, Apr 15 1998

Keywords

Comments

From Robert Israel, Apr 10 2016: (Start)
n for which n divides A007091(n).
If n is in the sequence, then so is 5*n. (End)

Examples

			25 in base 5 is 100, which interpreted in base 10 is 100 = 4 * 25.
224 in base 5 is 1344, which interpreted in base 10 is 1344 = 6 * 224.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local L,i;
    L:= convert(n,base,5);
    add(L[i]*10^(i-1),i=1..nops(L)) mod n = 0
    end proc:
    0, op(select(filter, [$1..10^5])); # Robert Israel, Apr 10 2016
  • Mathematica
    Select[Range[0,13000], Divisible[FromDigits[IntegerDigits[#, 5]], #] &] (* Harvey P. Dale, Feb 01 2011 *)

Extensions

Example and better description from Erich Friedman, Jul 21 2001
Edited by Erich Friedman, Feb 09 2002
Offset changed and 0 inserted by Robert Israel, Apr 11 2016
Name edited by Jon E. Schoenfield, Oct 25 2019

A032860 Numbers whose base-5 representation Sum_{i=0..m} d(i)*5^i has d(m) > d(m-1) < d(m-2) > ...

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 10, 11, 15, 16, 17, 20, 21, 22, 23, 26, 27, 28, 29, 51, 52, 53, 54, 57, 58, 59, 76, 77, 78, 79, 82, 83, 84, 88, 89, 101, 102, 103, 104, 107, 108, 109, 113, 114, 119, 130, 135, 136, 140, 141, 142, 145, 146, 147, 148, 255
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A007091.
Cf. A032858..A032865 for bases 3..10.
Cf. A306106..A306111 and A297147 for bases 3..9 and 10.

Extensions

a(1)=0 inserted by Georg Fischer, Dec 18 2020

A032912 Numbers whose set of base-5 digits is {1,3}.

Original entry on oeis.org

1, 3, 6, 8, 16, 18, 31, 33, 41, 43, 81, 83, 91, 93, 156, 158, 166, 168, 206, 208, 216, 218, 406, 408, 416, 418, 456, 458, 466, 468, 781, 783, 791, 793, 831, 833, 841, 843, 1031, 1033, 1041, 1043, 1081, 1083, 1091, 1093, 2031, 2033
Offset: 1

Views

Author

Keywords

Comments

Or, Numbers all of whose base-5 digits are odd.

Crossrefs

Cf. A007091.

Programs

  • Magma
    [n: n in [1..2500] | Set(IntegerToSequence(n, 5)) subset {1, 3}]; // Vincenzo Librandi, Jun 01 2012
    
  • Mathematica
    Flatten[Table[FromDigits[#,5]&/@Tuples[{1,3},n],{n,5}]] (* Vincenzo Librandi, Jun 01 2012 *)
  • Python
    def A032912(n): return (int(bin(m:=n+1)[3:],5)<<1) + (5**(m.bit_length()-1)-1>>2) # Chai Wah Wu, Oct 13 2023

A032955 Numbers whose base-5 representation Sum_{i=0..m} d(i)*5^(m-i) has even d(i) for all odd i.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 10, 12, 14, 15, 17, 19, 20, 22, 24, 25, 26, 27, 28, 29, 35, 36, 37, 38, 39, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 60, 61, 62, 63, 64, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 85, 86, 87, 88, 89, 95, 96, 97, 98, 99, 100, 101
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A007091 (numbers in base 5).

Extensions

Definition corrected by Sean A. Irvine, Nov 16 2020

A058185 Numbers (written in decimal) which appear the same when written in base 5 and base 10/2.

Original entry on oeis.org

0, 1, 2, 3, 4, 10, 11, 12, 13, 14, 20, 21, 22, 23, 24, 50, 51, 52, 53, 54, 60, 61, 62, 63, 64, 70, 71, 72, 73, 74, 100, 101, 102, 103, 104, 110, 111, 112, 113, 114, 120, 121, 122, 123, 124, 250, 251, 252, 253, 254, 260, 261, 262, 263, 264, 270, 271, 272, 273, 274
Offset: 1

Views

Author

Henry Bottomley, Nov 17 2000

Keywords

Comments

To represent a number in base b, if a digit exceeds b-1, subtract b and carry 1. In fractional base b/c, subtract b and carry c. The sequence consists of numbers which in base 5 only have even digits, or one more than such numbers.

Examples

			10 is a term since it is written as 20 both in base 5 and base 10/2.
40 it not a term since it is written as 130 in base 5 and 80 in base 10/2.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = If[n == 0, 0, 10 * s[2 * Floor[n/10]] + Mod[n, 10]]; q[k_] := s[k] == FromDigits[IntegerDigits[k, 5]]; Select[Range[0, 300], q] (* Amiram Eldar, Aug 02 2025 *)
  • PARI
    s(n) = if(n == 0, 0, 10 * s(n\10 * 2) + n % 10);
    isok(k) = s(k) == fromdigits(digits(k, 5)); \\ Amiram Eldar, Aug 02 2025

Extensions

Offset corrected by Amiram Eldar, Aug 02 2025
Previous Showing 41-50 of 321 results. Next