A361242
Number of nonequivalent noncrossing cacti with n nodes up to rotation.
Original entry on oeis.org
1, 1, 1, 2, 7, 26, 144, 800, 4995, 32176, 215914, 1486270, 10471534, 75137664, 547756650, 4047212142, 30255934851, 228513227318, 1741572167716, 13380306774014, 103542814440878, 806476983310180, 6318519422577854, 49769050291536486, 393933908000862866
Offset: 0
The a(3) = 2 nonequivalent cacti have the following blocks:
{{1,2}, {1,3}},
{{1,2,3}}.
Graphically these can be represented:
1 1
/ \ / \
2 3 2----3
.
The a(4) = 7 nonequivalent cacti have the following blocks:
{{1,2}, {1,3}, {1,4}},
{{1,2}, {1,3}, {3,4}},
{{1,2}, {1,4}, {2,3}},
{{1,2}, {2,4}, {3,4}},
{{1,2}, {1,3,4}},
{{1,2}, {2,3,4}},
{{1,2,3,4}}.
Graphically these can be represented:
1---4 1 4 1---4 1 4
| \ | \ | | | / |
2 3 2 3 2---3 2 3
.
1---4 1 4 1---4
| \ | | / | | |
2 3 2---3 2---3
-
\\ Here F(n) is the g.f. of A003168.
F(n) = {1 + serreverse(x/((1+2*x)*(1+x)^2) + O(x*x^n))}
seq(n) = {my(f=F(n-1)); Vec(1 + intformal(f) - sum(d=2, n, eulerphi(d) * log(1-subst(x*f^2 + O(x^(n\d+1)),x,x^d)) / d), -n-1)}
A326331
Number of simple graphs covering the vertices {1..n} whose nesting edges are connected.
Original entry on oeis.org
1, 0, 1, 0, 1, 14, 539
Offset: 0
The non-covering case is the binomial transform
A326330.
Covering graphs whose crossing edges are connected are
A324327.
-
nesXQ[stn_]:=MatchQ[stn,{_,{x_,y_},_,{z_,t_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[nestcmpts[#]]<=1&]],{n,0,5}]
A326339
Number of connected simple graphs with vertices {1..n} and no crossing or nesting edges.
Original entry on oeis.org
1, 0, 1, 4, 12, 36, 108, 324
Offset: 0
The a(2) = 1 through a(4) = 36 edge-sets:
{12} {12,13} {12,13,14}
{12,23} {12,13,34}
{13,23} {12,14,34}
{12,13,23} {12,23,24}
{12,23,34}
{12,24,34}
{13,23,34}
{14,24,34}
{12,13,14,34}
{12,13,23,34}
{12,14,24,34}
{12,23,24,34}
Covering graphs with no crossing or nesting edges are
A326329.
Connected simple graphs are
A001349.
The case with only crossing edges forbidden is
A007297.
Graphs without crossing or nesting edges are
A326244.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[csm[#]]<=1&&!MatchQ[#,{_,{x_,y_},_,{z_,t_},_}/;x
A326340
Number of maximal simple graphs with vertices {1..n} and no crossing or nesting edges.
Original entry on oeis.org
1, 1, 1, 1, 4, 9, 19, 42
Offset: 0
Covering graphs with no crossing or nesting edges are
A326329.
The case with only crossing edges forbidden is
A000108 shifted right twice.
Simple graphs without crossing or nesting edges are
A326244.
Connected graphs with no crossing or nesting edges are
A326339.
-
fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
Table[Length[fasmax[Select[Subsets[Subsets[Range[n],{2}]],!MatchQ[#,{_,{x_,y_},_,{z_,t_},_}/;x
A045741
Number of edges in all noncrossing connected graphs on n nodes on a circle.
Original entry on oeis.org
1, 9, 82, 765, 7266, 69930, 679764, 6659037, 65635570, 650194974, 6467730204, 64562259762, 646399361076, 6488447895540, 65276186864232, 657998685456093, 6644370824416530, 67198463606576790, 680568874690989900
Offset: 2
a(3)=9; indeed, with vertices u, v, w, the noncrossing connected graphs are {uv,uw}, {vu, vw}, {wu, wv}, and {uv, vw, wu} with a total of 9 edges.
-
A045741 := proc(n) local k ; add(binomial(3*n-3,n+k)*binomial(k,n-1),k=0..2*n-3) ; end: seq(A045741(n),n=2..20) ; # R. J. Mathar, Feb 27 2008
-
Table[Sum[k*Binomial[3*n - 3, n + k]*Binomial[k - 1, k - n + 1], {k, n - 1, 2*n}]/(n - 1), {n,2,50}] (* G. C. Greubel, Jan 30 2017 *)
-
for(n=2,50, print1(sum(k=n-1,2*n, k*binomial(3*n-3,n+k)* binomial(k-1,k-n+1))/(n-1), ", ")) \\ G. C. Greubel, Jan 30 2017
A262737
O.g.f. exp( Sum_{n >= 1} A262732(n)*x^n/n ).
Original entry on oeis.org
1, 8, 95, 1336, 20642, 338640, 5791291, 102108760, 1842857390, 33879118384, 632210693270, 11944142806064, 228010741228740, 4391334026631072, 85221618348230355, 1664901954576830360, 32716286416687895862, 646228961799752926320, 12823701194384778672322
Offset: 0
-
A262737 := proc (n) option remember; if n = 0 then 1 else add(1/k!*(5*k)!/GAMMA(5*k/2 + 1)*GAMMA(3*k/2 + 1)/(3*k)!*A262737(n-k), k = 1 .. n)/n end if; end proc:
seq(A262737(n), n = 0 .. 20);
-
a(n) = sum(k=0, n, binomial(5*(n+1),k)*binomial(4*(n+1)-k-2,(n+1)-k-1))/(n+1); \\ Altug Alkan, Oct 03 2015
A262738
O.g.f. exp( Sum_{n >= 1} A211419(n)*x^n/n ).
Original entry on oeis.org
1, 10, 149, 2630, 51002, 1050132, 22539085, 498732014, 11296141454, 260613866380, 6103074997890, 144696786555580, 3466352150674324, 83776927644646952, 2040261954214847421, 50018542073019175806, 1233419779839067305350, 30572886836581693309020
Offset: 0
-
A262738 := proc(n) option remember; if n = 0 then 1 else add((6*k)!*(2*k)!/((4*k)!*(3*k)!*k!)*A262738(n-k), k = 1 .. n)/n end if; end proc:
seq(A262738(n), n = 0..20);
-
a(n) = sum(k=0, n, binomial(6*(n+1),k)*binomial(5*(n+1)-k-2,(n+1)-k-1))/(n+1); \\ Altug Alkan, Oct 03 2015
A262739
O.g.f. exp( Sum_{n >= 1} A262733(n)*x^n/n ).
Original entry on oeis.org
1, 12, 215, 4564, 106442, 2635704, 68031147, 1810302340, 49308457334, 1368019979976, 38525145673126, 1098380420669000, 31641932951483220, 919622628946689648, 26931762975278938035, 793967020231145502564, 23543663463050594677310, 701763102761640853890600, 21014048069544552257072530, 631868353403527700756671320, 19070677448561228207945931276
Offset: 0
-
A262739 := proc (n) option remember; if n = 0 then 1 else add(1/k!*(7*k)!/GAMMA(7*k/2 + 1)*GAMMA(5*k/2 + 1)/(5*k)!*A262739(n-k), k = 1 .. n)/n end if; end proc:
seq(A262739(n), n = 0..20);
-
a(n) = sum(k=0, n, binomial(7*(n+1),k)*binomial(6*(n+1)-k-2,(n+1)-k-1))/(n+1); \\ Altug Alkan, Oct 03 2015
A262740
O.g.f. exp( Sum_{n >= 1} A211421(n)*x^n/n ).
Original entry on oeis.org
1, 14, 293, 7266, 197962, 5726364, 172662765, 5367187226, 170772853790, 5534640052292, 182070248073826, 6063785526898644, 204055962203476788, 6927718839334775608, 236994877398511998717, 8161492483543100398410, 282705062046649346154006, 9843330120848835962213940
Offset: 0
-
#A262740
A262740 := proc (n) option remember; if n = 0 then 1 else add(1/k!*(8*k)!/(4*k)!*(3*k)!/(6*k)!*A262740(n-k), k = 1 .. n)/n end if; end proc:
seq(A262740(n), n = 0..17);
-
a(n) = sum(k=0, n, binomial(8*(n+1),k)*binomial(7*(n+1)-k-2,(n+1)-k-1))/(n+1); \\ Altug Alkan, Oct 03 2015
A065065
Number of noncrossing connected graphs with nodes on a circle having n edges.
Original entry on oeis.org
1, 3, 13, 64, 341, 1913, 11132, 66573, 406653, 2526351, 15913347, 101396034, 652378120, 4232439734, 27657380019, 181872596607, 1202641671293, 7991878198287, 53343146808137, 357464739709920, 2404073823950915
Offset: 1
a(3)=13 because we have 1 triangle on 3 nodes and 12 non-crossing trees on 4 nodes.
-
A065065 := n-> sum(binomial(3*k-3,n+k)*binomial(n-1,n-k+1)/(k-1),k=ceil((n+3)/2)..n+1);
-
terms = 21;
A[_] = 0;
Do[A[x_] = x (1 + 3 A[x] + 4 A[x]^2 + A[x]^3) + O[x]^(terms+1), {terms+1}];
CoefficientList[A[x]/x, x] (* Jean-François Alcover, Jul 29 2018, after Vladimir Kruchinin *)
-
a(n)=sum(k=ceil((n+3)/2), n+1, binomial(3*k-3,n+k)*binomial(n-1,n-k+1)/(k-1)); \\ Andrew Howroyd, Nov 12 2017
-
Vec(serreverse(x/(1+3*x+4*x^2+x^3) + O(x^20))) \\ Andrew Howroyd, Nov 12 2017
Comments