cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 48 results. Next

A089436 Number of non-crossing connected graphs on n nodes on a circle in which a fixed (distinguished) node has degree one.

Original entry on oeis.org

1, 2, 9, 54, 374, 2820, 22485, 186494, 1592778, 13914108, 123750874, 1116809628, 10201516332, 94140605832, 876332565837, 8219124900558, 77594375595266, 736785675010380, 7031930543228910, 67420537625021460, 649070964647075700
Offset: 2

Views

Author

Emeric Deutsch, Dec 28 2003

Keywords

Comments

Convolution of (1, A007297) with itself.

Examples

			a(3)=2 because among the four non-crossing graphs on the points A,B,C, the distinguished node A has degree equal to 1 only in the graphs {AB,BC} and {AC,BC}; in the other two graphs ({AB,AC} and {AB,BC,AC}) the node A has degree 2.
		

Crossrefs

Column k=1 of A143022.
Cf. A007297.

Programs

  • Mathematica
    terms = 21;
    g[x_] = 0;
    Do[g[x_] = g[x]^2 + x (1 + g[x])^3 + O[x]^(terms+2), {terms+2}];
    Drop[CoefficientList[(x + x g[x])^2 + O[x]^(terms+2), x], 2] (* Jean-François Alcover, Oct 05 2011, updated Jul 29 2018 after Andrew Howroyd *)
  • PARI
    a(n)=if(n<3, n==2, sum(k=2, 2*n-4, 2*binomial(k-2, n-3)*binomial(3*n-5, 2*n-k-4))/(n-2)); \\ Andrew Howroyd, Nov 12 2017
    
  • PARI
    Vec((x+x*serreverse((x-x^2)/(1+x)^3 + O(x^25)))^2) \\ Andrew Howroyd, Nov 13 2017

Formula

a(n) = Sum_{k=2..2*n-4} 2*binomial(k-2, n-3)*binomial(3*n-5, 2*n-k-4)/(n-2) for n > 2. - Andrew Howroyd, Nov 12 2017
G.f.: g^2, where g satisfies g^3+g^2-3zg+2z^2=0, g(0)=0, or, in Maple notation, g := -1/3+(2/3)*sqrt(1+9*z)*sin((1/3)*arcsin((2+27*z+54*z^2)/2/(1+9*z)^(3/2))).
G.f.: (x+x*g)^2 where g satisfies g - g^2 = x*(1 + g)^3. - Andrew Howroyd, Nov 13 2017
a(n) ~ 2^(n-1) * 3^(3*n/2-9/4) / (sqrt(Pi)*n^(3/2)*sqrt(45+26*sqrt(3))). - Vaclav Kotesovec, Mar 17 2014
D-finite with recurrence n*(2*n-3)*(n-2)*a(n) +6*(9*n-10)*a(n-1) -12*(3*n-10)*(3*n-8)*(2*n-1)*a(n-2)=0. - R. J. Mathar, May 10 2018

A365842 Expansion of (1/x) * Series_Reversion( x*(1-x)^2/(1+x)^3 ).

Original entry on oeis.org

1, 5, 37, 325, 3141, 32261, 345605, 3818501, 43197445, 497868805, 5825331205, 69013667845, 826213203973, 9979713945605, 121472752156677, 1488482728148997, 18346810389299205, 227319830355640325, 2829629321065267205, 35369618935665131525, 443775430273133445125
Offset: 0

Views

Author

Seiichi Manyama, Sep 20 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(2*n+k+1, k)*binomial(3*(n+1), n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(2*n+k+1,k) * binomial(3*(n+1),n-k).
a(n) = (1/(n+1)) * [x^n] ( (1+x)^3 / (1-x)^2 )^(n+1). - Seiichi Manyama, Feb 17 2024

A143018 Triangle read by rows: T(n,k) (n >= 2, k >= 1) is the number of non-crossing connected graphs on n nodes on a circle such that the distance from a fixed node (root) to the next node is k. Rows are indexed 2,3,4,...; columns are indexed 1,2,3, ... .

Original entry on oeis.org

1, 3, 1, 16, 6, 1, 105, 41, 9, 1, 768, 306, 75, 12, 1, 6006, 2422, 630, 118, 15, 1, 49152, 19980, 5394, 1104, 170, 18, 1, 415701, 169941, 47061, 10197, 1755, 231, 21, 1, 3604480, 1479786, 417439, 94116, 17425, 2610, 301, 24, 1
Offset: 2

Views

Author

Emeric Deutsch, Jul 30 2008

Keywords

Comments

Row sums yield A007297.
T(n,1) = A085614(n-1).
Sum_{k=1..n-1} k*T(n,k) = A143020(n).

Examples

			T(3,1)=3 and T(3,2)=1 because in the graphs (AB,BC,CA), (AB,AC), (AB,BC) and (AC,BC) the distances from A to B are 1, 1, 1 and 2, respectively.
Triangle starts:
    1;
    3,   1;
   16,   6,  1;
  105,  41,  9,  1;
  768, 306, 75, 12, 1;
  ...
		

Crossrefs

Programs

  • Maple
    L:=proc(p,q,r) options operator, arrow: sum(binomial(q, i)*binomial(r+p-1-i, r-1), i=0..min(p,q)) end proc: T:=proc(n,k) options operator, arrow: k*L(n-k-1, 3*n-k-4, n-1)/(n-1) end proc: for n from 2 to 10 do seq(T(n,k),k=1..n-1) end do; # yields sequence in triangular form
  • Mathematica
    t[n_, k_] := k*L[n - k - 1, 3*n - k - 4, n-1]/(n-1); L[p_, q_, r_] := Sum[ Binomial[q, i]*Binomial[r + p - 1 - i, r-1], {i, 0, Min[p, q]}]; Flatten[ Table[ t[n, k], {n, 2, 10}, {k, 1, n-1}]] (* Jean-François Alcover, Oct 05 2011, Oct 05 2011, after Maple *)
  • PARI
    T(n,k)=k*sum(i=0, min(n-k-1, 3*n-k-4), binomial(3*n-k-4, i)*binomial(2*n-k-i-3, n-2))/(n-1);
    for(n=2, 10, for(k=1, n-1, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 17 2017

Formula

T(n,k) = k*L(n-k-1, 3n-k-4, n-1)/(n-1) (n >= 2, 1 <= k <= n-1), where L(p,q,r) = [u^p](1+u)^q/(1-u)^r = Sum_{i=0..min(p,q)} binomial(q,i)*binomial(r+p-1-i, r-1).
G.f.: G(t,z) = zg/[g - t*(g - z)], where g=g(z), the g.f. for the number of non-crossing connected graphs on n nodes on a circle, satisfies g^3 + g^2 - 3z*g + 2*z^2 = 0 (A007297).
T(n,k) = k*Sum_{i=0..min(n-k-1, 3*n-k-4)} binomial(3*n-k-4, i)*binomial(2*n-k-i-3, n-2)/(n-1). - Andrew Howroyd, Nov 17 2017

A143022 Triangle read by rows: T(n,k) is the number of non-crossing connected graphs on n nodes on a circle in which the root (a distinguished node) has degree k (n >= 2, 1 <= k <= n-1).

Original entry on oeis.org

1, 2, 2, 9, 10, 4, 54, 62, 32, 8, 374, 436, 248, 88, 16, 2820, 3316, 1984, 816, 224, 32, 22485, 26586, 16404, 7320, 2416, 544, 64, 186494, 221350, 139424, 65512, 24032, 6688, 1280, 128, 1592778, 1895740, 1211848, 590040, 231824, 73088, 17664, 2944
Offset: 2

Views

Author

Emeric Deutsch, Jul 30 2008

Keywords

Comments

Row sums yield A007297.
T(n,1) = A089436(n).
Sum_{k=1..n-1} k*T(n,k) = A143023.

Examples

			T(3,1)=2, T(3,2)=2 because in the graphs (AB,BC,CA), (AB,AC), (AB,BC) and (AC,BC) the node A has degrees 2, 2, 1 and 1, respectively.
Triangle starts:
     1;
     2,    2;
     9,   10,    4;
    54,   62,   32,   8;
   374,  436,  248,  88,  16;
  2820, 3316, 1984, 816, 224, 32;
		

Crossrefs

Programs

  • Maple
    L:=proc(p,q,r) options operator, arrow: sum(binomial(q, i)*binomial(r+p-1-i, r-1), i=0..min(p, q)) end proc: T:=proc(n,k) options operator, arrow: 2^(k-1)*(k*L(n-k-1,3*n-k-4,n-2)-L(n-k-2,3*n-k-3,n-1))/(n-1) end proc: for n from 2 to 10 do seq(T(n,k),k=1..n-1) end do; # yields sequence in triangular form
  • Mathematica
    L[p_, q_, r_] := Sum[Binomial[q, i]*Binomial[r + p - 1 - i, r-1], {i, 0, Min[p, q]}]; t[n_, k_] := 2^(k-1)*(k*L[n - k - 1, 3*n - k - 4, n - 2] - L[n - k - 2, 3*n - k - 3, n-1])/(n-1); t[2, 1] = 1; Flatten[ Table[t[n, k], {n, 2, 10}, {k, 1, n-1}]] (* Jean-François Alcover, Oct 05 2011, after Maple *)
  • PARI
    L(p,q,r)={sum(i=0, min(p,q), binomial(q,i)*binomial(r+p-1-i,r-1))}
    T(n,k)={if(n<3, n==2&&k==1, 2^(k-1)*(k*L(n-k-1, 3*n-k-4, n-2) - L(n-k-2, 3*n-k-3, n-1))/(n-1))}
    for(n=2, 10, for(k=1, n-1, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 17 2017
    
  • PARI
    S(n)={my(g=x+x*serreverse((x-x^2)/(1+x)^3 + O(x^n))); Vec(g*(x - y*(g-x))/(g - 2*y*(g - x)))}
    my(v=S(10)); for(n=2, #v, my(p=v[n]); for(k=1, n-1, print1(polcoeff(p,k), ", ")); print) \\ Andrew Howroyd, Nov 17 2017

Formula

T(n,k) = 2^(k-1)*(k*L(n-k-1, 3*n-k-4, n-2) - L(n-k-2, 3*n-k-3, n-1))/(n-1) (n >= 2, 1 <= k <= n-1), where L(p,q,r) = [u^p](1+u)^q/(1-u)^r = Sum_{i=0..min(p,q)} binomial(q,i)*binomial(r+p-1-i, r-1).
G.f.: G(t,z) = g*(z - t*(g-z))/(g - 2*t*(g-z)), where g=g(z), the g.f. for the number of non-crossing connected graphs on n nodes on a circle, satisfies g^3 + g^2 - 3*z*g + 2*z^2 = 0 (A007297).

A326341 Number of minimal topologically connected chord graphs covering {1..n}.

Original entry on oeis.org

1, 0, 1, 0, 1, 5, 22, 119
Offset: 0

Views

Author

Gus Wiseman, Jun 29 2019

Keywords

Comments

Covering means there are no isolated vertices. Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b. A graph is topologically connected if the graph whose vertices are the edges and whose edges are crossing pairs of edges is connected.

Examples

			The a(4) = 1 through a(6) = 22 edge-sets:
  {13,24}  {13,14,25}  {13,25,46}
           {13,24,25}  {14,25,36}
           {13,24,35}  {14,26,35}
           {14,24,35}  {15,24,36}
           {14,25,35}  {13,14,15,26}
                       {13,14,25,26}
                       {13,15,24,26}
                       {13,15,26,46}
                       {13,24,25,26}
                       {13,24,25,36}
                       {13,24,26,35}
                       {13,24,35,36}
                       {13,24,35,46}
                       {14,15,26,36}
                       {14,24,35,36}
                       {14,24,35,46}
                       {14,25,35,46}
                       {15,24,35,46}
                       {15,25,35,46}
                       {15,25,36,46}
                       {15,26,35,46}
                       {15,26,36,46}
		

Crossrefs

The non-minimal case is A324327.
Minimal covers are A053530.
Topologically connected graphs are A324327 (covering) or A324328 (all).

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    crosscmpts[stn_]:=csm[Union[Subsets[stn,{1}],Select[Subsets[stn,{2}],croXQ]]];
    Table[Length[fasmin[Select[Subsets[Subsets[Range[n],{2}]],And[Union@@#==Range[n],Length[crosscmpts[#]]<=1]&]]],{n,0,5}]

A361243 Number of nonequivalent noncrossing cacti with n nodes up to rotation and reflection.

Original entry on oeis.org

1, 1, 1, 2, 5, 17, 79, 421, 2537, 16214, 108204, 743953, 5237414, 37574426, 273889801, 2023645764, 15128049989, 114256903169, 870786692493, 6690155544157, 51771411793812, 403238508004050, 3159259746188665, 24884525271410389, 196966954270163612
Offset: 0

Views

Author

Andrew Howroyd, Mar 07 2023

Keywords

Comments

A noncrossing cactus is a connected noncrossing graph (A007297) that is a cactus graph (a tree of edges and polygons).

Examples

			The a(4) = 5 nonequivalent cacti have the following blocks:
  {{1,2}, {1,3}, {1,4}},
  {{1,2}, {1,3}, {3,4}},
  {{1,2}, {1,4}, {2,3}},
  {{1,2}, {1,3,4}},
  {{1,2,3,4}}.
Graphically these can be represented:
   1---4    1   4    1---4    1---4    1---4
   | \      | \ |    |        | \ |    |   |
   2   3    2   3    2---3    2   3    2---3
		

Crossrefs

Programs

  • PARI
    \\ Here F(n) is the g.f. of A003168.
    F(n) = {1 + serreverse(x/((1+2*x)*(1+x)^2) + O(x*x^n))}
    seq(n) = {my(f=F(n-1)); Vec(1/(1 - x*subst(f + O(x^(n\2+1)), x, x^2)) + 1 + intformal(f) - sum(d=2, n, eulerphi(d) * log(1-subst(x*f^2 + O(x^(n\d+1)),x,x^d)) / d), -n-1)/2}

A365844 Expansion of (1/x) * Series_Reversion( x*(1-x)^4/(1+x)^3 ).

Original entry on oeis.org

1, 7, 74, 931, 12894, 189798, 2913980, 46140347, 748022678, 12354604274, 207148525484, 3516699607022, 60328735646620, 1044182053141612, 18212018061261600, 319771572646888811, 5647677332549552870, 100266714048150595770, 1788366334642393259292
Offset: 0

Views

Author

Seiichi Manyama, Sep 20 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(4*n+k+3, k)*binomial(3*(n+1), n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(4*n+k+3,k) * binomial(3*(n+1),n-k).

A365845 Expansion of (1/x) * Series_Reversion( x*(1-x)^5/(1+x)^3 ).

Original entry on oeis.org

1, 8, 97, 1400, 22243, 375584, 6614508, 120136984, 2234022775, 42322629960, 813939319697, 15849232257824, 311858145053076, 6191083938051840, 123852349440862504, 2494251111318893400, 50526944132627936127, 1028872756710478785560
Offset: 0

Views

Author

Seiichi Manyama, Sep 20 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(5*n+k+4, k)*binomial(3*(n+1), n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(5*n+k+4,k) * binomial(3*(n+1),n-k).

A089433 Number of noncrossing connected graphs on n nodes having exactly two interior faces.

Original entry on oeis.org

2, 30, 315, 2856, 23940, 191268, 1480050, 11196900, 83304936, 611931320, 4450217772, 32104210320, 230080173960, 1639890119016, 11634355574100, 82216112723640, 579022013389050, 4065827626164150, 28475852003986695
Offset: 4

Views

Author

Emeric Deutsch, Dec 28 2003

Keywords

Examples

			a(4)=2 because the only connected graphs on the nodes A,B,C,D having exactly two interior faces are {AB,BC,CD,DA,AC} and {AB,BC,CD,DA,BD}.
		

Crossrefs

Column k=2 of A089434.
Cf. A007297.

Programs

  • PARI
    a(n) = n*binomial(3*n-3, n-4)/2; \\ Michel Marcus, Oct 26 2015

Formula

a(n) = n*binomial(3n-3, n-4)/2.
D-finite with recurrence -2*(2*n+1)*(n-4)*a(n) +3*(3*n-4)*(3*n-5)*a(n-1)=0. - R. J. Mathar, Jul 26 2022

A089435 Triangle read by rows: T(n,k) (n >= 2, k >= 0) is the number of non-crossing connected graphs on n nodes on a circle, having k triangles. Rows are indexed 2,3,4,...; columns are indexed 0,1,2,....

Original entry on oeis.org

1, 3, 1, 13, 8, 2, 66, 60, 25, 5, 367, 442, 255, 84, 14, 2164, 3248, 2380, 1064, 294, 42, 13293, 23904, 21192, 11832, 4410, 1056, 132, 84157, 176397, 183303, 122115, 56430, 18216, 3861, 429, 545270, 1305480, 1554850, 1200320, 657195, 262262, 75075
Offset: 2

Views

Author

Emeric Deutsch, Dec 28 2003

Keywords

Examples

			T(4,1)=8 because, considering the complete graph K_4 on the nodes A,B,C and D, we obtain a non-crossing connected graph on A,B,C,D, with exactly one triangle, by deleting one of the two diagonals and one of the four sides (8 possibilities).
Triangle starts:
    1;
    3,   1;
   13,   8,   2;
   66,  60,  25,   5;
  367, 442, 255,  84,  14;
  ...
		

Crossrefs

T(n, n-2) yields the Catalan numbers (A000108) corresponding to triangulations, T(n, 0) yields A045743, row sums yield A007297.

Programs

  • Mathematica
    t[n_, k_] = Binomial[n+k-2, k]*Sum[Binomial[n+k+i-2, i]*Binomial[3n-3-k-i, 2n-1+i], {i, 0, Floor[(n-k-2)/2]}]/(n-1) ;
    Flatten[Table[t[n, k], {n, 2, 10}, {k, 0, n-2}]][[1 ;; 43]] (* Jean-François Alcover, Jun 20 2011 *)
  • PARI
    T(n, k) = binomial(n+k-2, k)*sum(i=0,floor((n-k-2)/2),binomial(n+k+i-2, i)*binomial(3*n-3-k-i, 2*n-1+i))/(n-1); \\ Michel Marcus, Oct 26 2015

Formula

T(n, k) = binomial(n+k-2, k)*sum(binomial(n+k+i-2, i)*binomial(3*n-3-k-i, 2*n-1+i), i=0..floor((n-k-2)/2))/(n-1), n>=2, k>=0.
G.f.: G(t, z) satisfies G^4 + G^3 + (t-4)*z*G^2-2*(t-2)*z^2*G + (t-1)*z^3 = 0.

Extensions

Keyword tabl added by Michel Marcus, Apr 09 2013
Previous Showing 31-40 of 48 results. Next