cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 69 results. Next

A304711 Heinz numbers of integer partitions whose distinct parts are pairwise coprime.

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30, 32, 33, 34, 35, 36, 38, 40, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 58, 60, 62, 64, 66, 68, 69, 70, 72, 74, 75, 76, 77, 80, 82, 85, 86, 88, 90, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 106, 108, 110
Offset: 1

Views

Author

Gus Wiseman, May 17 2018

Keywords

Comments

Two parts are coprime if they have no common divisor greater than 1. For partitions of length 1 note that (1) is coprime but (x) is not coprime for x > 1.
First differs from A289509 at a(24) = 44, A289509(24) = 42.

Examples

			Sequence of all partitions whose distinct parts are pairwise coprime begins (1), (11), (21), (111), (31), (211), (41), (32), (1111), (221), (311), (51), (2111), (61), (411), (321), (11111), (52), (71), (43), (2211), (81), (3111).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[200],CoprimeQ@@PrimePi/@FactorInteger[#][[All,1]]&]

A337561 Number of pairwise coprime strict compositions of n, where a singleton is not considered coprime unless it is (1).

Original entry on oeis.org

1, 1, 0, 2, 2, 4, 8, 6, 16, 12, 22, 40, 40, 66, 48, 74, 74, 154, 210, 228, 242, 240, 286, 394, 806, 536, 840, 654, 1146, 1618, 2036, 2550, 2212, 2006, 2662, 4578, 4170, 7122, 4842, 6012, 6214, 11638, 13560, 16488, 14738, 15444, 16528, 25006, 41002, 32802
Offset: 0

Views

Author

Gus Wiseman, Sep 18 2020

Keywords

Examples

			The a(1) = 1 through a(9) = 12 compositions (empty column shown as dot):
   (1)  .  (1,2)  (1,3)  (1,4)  (1,5)    (1,6)  (1,7)    (1,8)
           (2,1)  (3,1)  (2,3)  (5,1)    (2,5)  (3,5)    (2,7)
                         (3,2)  (1,2,3)  (3,4)  (5,3)    (4,5)
                         (4,1)  (1,3,2)  (4,3)  (7,1)    (5,4)
                                (2,1,3)  (5,2)  (1,2,5)  (7,2)
                                (2,3,1)  (6,1)  (1,3,4)  (8,1)
                                (3,1,2)         (1,4,3)  (1,3,5)
                                (3,2,1)         (1,5,2)  (1,5,3)
                                                (2,1,5)  (3,1,5)
                                                (2,5,1)  (3,5,1)
                                                (3,1,4)  (5,1,3)
                                                (3,4,1)  (5,3,1)
                                                (4,1,3)
                                                (4,3,1)
                                                (5,1,2)
                                                (5,2,1)
		

Crossrefs

A072706 counts unimodal strict compositions.
A220377*6 counts these compositions of length 3.
A305713 is the unordered version.
A337462 is the not necessarily strict version.
A000740 counts relatively prime compositions, with strict case A332004.
A051424 counts pairwise coprime or singleton partitions.
A101268 considers all singletons to be coprime, with strict case A337562.
A178472 counts compositions with a common factor > 1.
A327516 counts pairwise coprime partitions, with strict case A305713.
A328673 counts pairwise non-coprime partitions.
A333228 ranks compositions whose distinct parts are pairwise coprime.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],#=={}||UnsameQ@@#&&CoprimeQ@@#&]],{n,0,10}]

Formula

a(n) = A337562(n) - 1 for n > 1.

A355737 Number of ways to choose a sequence of divisors, one of each prime index of n (with multiplicity), such that the result has no common divisor > 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 2, 1, 3, 4, 1, 1, 4, 1, 2, 4, 2, 1, 2, 3, 4, 7, 3, 1, 4, 1, 1, 4, 2, 6, 4, 1, 4, 6, 2, 1, 6, 1, 2, 8, 3, 1, 2, 5, 4, 4, 4, 1, 8, 4, 3, 5, 4, 1, 4, 1, 2, 10, 1, 6, 4, 1, 2, 6, 6, 1, 4, 1, 6, 8, 4, 6, 8, 1, 2, 15, 2, 1, 6, 4, 4
Offset: 1

Views

Author

Gus Wiseman, Jul 17 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(2) = 1 through a(18) = 4 choices:
  1  1  11  1  11  1  111  11  11  1  111  1  11  11  1111  1  111
               12          12  13     112     12  13           112
                           21                 14  21           121
                                                  23           122
		

Crossrefs

Dominated by A355731, firsts A355732, primes A355741, prime-powers A355742.
For weakly increasing instead of coprime we have A355735, primes A355745.
Positions of first appearances are A355738.
For strict instead of coprime we have A355739, zeros A355740.
A000005 counts divisors.
A001221 counts distinct prime factors, with sum A001414.
A001222 counts prime factors with multiplicity.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798.
A120383 lists numbers divisible by all of their prime indices.
A289508 gives GCD of prime indices.
A289509 ranks relatively prime partitions, odd A302697, squarefree A302796.
A324850 lists numbers divisible by the product of their prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Tuples[Divisors/@primeMS[n]],GCD@@#==1&]],{n,100}]

A337485 Number of pairwise coprime integer partitions of n with no 1's, where a singleton is not considered coprime unless it is (1).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 2, 1, 2, 2, 4, 3, 5, 4, 4, 7, 8, 9, 10, 10, 9, 13, 17, 18, 17, 19, 19, 24, 29, 34, 33, 31, 31, 42, 42, 56, 55, 50, 54, 66, 77, 86, 86, 79, 81, 96, 124, 127, 126, 127, 126, 145, 181, 190, 184, 183, 192, 212, 262, 289, 278, 257, 270, 311
Offset: 0

Views

Author

Gus Wiseman, Sep 21 2020

Keywords

Comments

Such a partition is necessarily strict.
The Heinz numbers of these partitions are the intersection of A005408 (no 1's), A005117 (strict), and A302696 (coprime).

Examples

			The a(n) partitions for n = 5, 7, 12, 13, 16, 17, 18, 19 (A..H = 10..17):
  (3,2)  (4,3)  (7,5)    (7,6)  (9,7)    (9,8)      (B,7)    (A,9)
         (5,2)  (5,4,3)  (8,5)  (B,5)    (A,7)      (D,5)    (B,8)
                (7,3,2)  (9,4)  (D,3)    (B,6)      (7,6,5)  (C,7)
                         (A,3)  (7,5,4)  (C,5)      (8,7,3)  (D,6)
                         (B,2)  (8,5,3)  (D,4)      (9,5,4)  (E,5)
                                (9,5,2)  (E,3)      (9,7,2)  (F,4)
                                (B,3,2)  (F,2)      (B,4,3)  (G,3)
                                         (7,5,3,2)  (B,5,2)  (H,2)
                                                    (D,3,2)  (B,5,3)
                                                             (7,5,4,3)
		

Crossrefs

A005408 intersected with A302696 ranks these partitions.
A007359 considers all singletons to be coprime.
A327516 allows 1's, with non-strict version A305713.
A337452 is the relatively prime instead of pairwise coprime version, with non-strict version A302698.
A337563 is the restriction to partitions of length 3.
A002865 counts partitions with no 1's.
A078374 counts relatively prime strict partitions.
A200976 and A328673 count pairwise non-coprime partitions.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!MemberQ[#,1]&&CoprimeQ@@#&]],{n,0,30}]

Formula

a(n) = A007359(n) - 1 for n > 1.

A318717 Number of strict integer partitions of n in which no two parts are relatively prime.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 3, 1, 5, 1, 5, 4, 6, 1, 10, 1, 11, 6, 12, 1, 19, 3, 18, 8, 23, 1, 36, 2, 32, 13, 38, 7, 57, 2, 54, 19, 68, 3, 95, 3, 90, 33, 104, 3, 148, 7, 149, 40, 166, 5, 230, 17, 226, 56, 256, 6, 360, 9, 340, 84, 390, 25, 527, 11, 513, 109
Offset: 0

Views

Author

Gus Wiseman, Sep 02 2018

Keywords

Examples

			The a(20) = 11 partitions:
  (20),
  (12,8), (14,6), (15,5), (16,4), (18,2),
  (10,6,4), (10,8,2), (12,6,2), (14,4,2),
  (8,6,4,2).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[UnsameQ@@#,And@@(GCD[##]>1&)@@@Select[Tuples[#,2],Less@@#&]]&]],{n,30}]

Extensions

a(51)-a(69) from Alois P. Heinz, Sep 02 2018

A350842 Number of integer partitions of n with no difference -2.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 12, 16, 24, 30, 40, 54, 69, 89, 118, 146, 187, 239, 297, 372, 468, 575, 711, 880, 1075, 1314, 1610, 1947, 2359, 2864, 3438, 4135, 4973, 5936, 7090, 8466, 10044, 11922, 14144, 16698, 19704, 23249, 27306, 32071, 37639, 44019, 51457, 60113
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2022

Keywords

Examples

			The a(1) = 1 through a(7) = 12 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (32)     (33)      (43)
             (111)  (211)   (41)     (51)      (52)
                    (1111)  (221)    (222)     (61)
                            (2111)   (321)     (322)
                            (11111)  (411)     (511)
                                     (2211)    (2221)
                                     (21111)   (3211)
                                     (111111)  (4111)
                                               (22111)
                                               (211111)
                                               (1111111)
		

Crossrefs

Heinz number rankings are in parentheses below.
The version for no difference 0 is A000009.
The version for subsets of prescribed maximum is A005314.
The version for all differences < -2 is A025157, non-strict A116932.
The version for all differences > -2 is A034296, strict A001227.
The opposite version is A072670.
The version for no difference -1 is A116931 (A319630), strict A003114.
The multiplicative version is A350837 (A350838), strict A350840.
The strict case is A350844.
The complement for quotients is counted by A350846 (A350845).
A000041 = integer partitions.
A027187 = partitions of even length.
A027193 = partitions of odd length (A026424).
A323092 = double-free partitions (A320340), strict A120641.
A325534 = separable partitions (A335433).
A325535 = inseparable partitions (A335448).
A350839 = partitions with a gap and conjugate gap (A350841).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],FreeQ[Differences[#],-2]&]],{n,0,30}]

A302797 Squarefree numbers whose prime indices are pairwise coprime. Heinz numbers of strict integer partitions with pairwise coprime parts.

Original entry on oeis.org

1, 2, 6, 10, 14, 15, 22, 26, 30, 33, 34, 35, 38, 46, 51, 55, 58, 62, 66, 69, 70, 74, 77, 82, 85, 86, 93, 94, 95, 102, 106, 110, 118, 119, 122, 123, 134, 138, 141, 142, 143, 145, 146, 154, 155, 158, 161, 165, 166, 170, 177, 178, 186, 187, 190, 194, 201, 202
Offset: 1

Views

Author

Gus Wiseman, Apr 13 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. Two or more numbers are coprime if no pair of them has a common divisor other than 1. A single number is not considered coprime unless it is equal to 1.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			Sequence of terms together with their sets of prime indices begins:
01 : {}
02 : {1}
06 : {1,2}
10 : {1,3}
14 : {1,4}
15 : {2,3}
22 : {1,5}
26 : {1,6}
30 : {1,2,3}
33 : {2,5}
34 : {1,7}
35 : {3,4}
38 : {1,8}
46 : {1,9}
51 : {2,7}
55 : {3,5}
58 : {1,10}
62 : {1,11}
66 : {1,2,5}
69 : {2,9}
70 : {1,3,4}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Or[#===1,SquareFreeQ[#]&&CoprimeQ@@PrimePi/@FactorInteger[#][[All,1]]]&]

A055684 Number of different n-pointed stars.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 2, 1, 4, 1, 5, 2, 3, 3, 7, 2, 8, 3, 5, 4, 10, 3, 9, 5, 8, 5, 13, 3, 14, 7, 9, 7, 11, 5, 17, 8, 11, 7, 19, 5, 20, 9, 11, 10, 22, 7, 20, 9, 15, 11, 25, 8, 19, 11, 17, 13, 28, 7, 29, 14, 17, 15, 23, 9, 32, 15, 21, 11, 34, 11, 35, 17, 19, 17, 29, 11
Offset: 3

Views

Author

Robert G. Wilson v, Jun 09 2000

Keywords

Comments

Does not count rotations or reflections.
This is also the distinct ways of writing a number as the sum of two positive integers greater than one that are coprimes. - Lei Zhou, Mar 19 2014
Equivalently, a(n) is the number of relatively prime 2-part partitions of n without 1's. The Heinz numbers of these partitions are the intersection of A001358 (pairs), A005408 (no 1's), and A000837 (relatively prime) or A302696 (pairwise coprime). - Gus Wiseman, Oct 28 2020

Examples

			The first star has five points and is unique. The next is the seven pointed star and it comes in two varieties.
From _Gus Wiseman_, Oct 28 2020: (Start)
The a(5) = 1 through a(17) = 7 irreducible pairs > 1 (shown as fractions, empty column indicated by dot):
  2/3  .  2/5  3/5  2/7  3/7  2/9  5/7  2/11  3/11  2/13  3/13  2/15
          3/4       4/5       3/8       3/10  5/9   4/11  5/11  3/14
                              4/7       4/9         7/8   7/9   4/13
                              5/6       5/8                     5/12
                                        6/7                     6/11
                                                                7/10
                                                                8/9
(End)
		

References

  • Mark A. Herkommer, "Number Theory, A Programmer's Guide," McGraw-Hill, New York, 1999, page 58.

Crossrefs

Cf. A023022.
Cf. A053669 smallest skip increment, A102302 skip increment of densest star polygon.
A055684*2 is the ordered version.
A082023 counts the complement (reducible pairs > 1).
A220377, A337563, and A338332 count triples instead of pairs.
A000837 counts relatively prime partitions, with strict case A078374.
A002865 counts partitions with no 1's, with strict case A025147.
A007359 and A337485 count pairwise coprime partitions with no 1's.
A302698 counts relatively prime partitions with no 1's, with strict case A337452.
A327516 counts pairwise coprime partitions, with strict case A305713.
A337450 counts relatively prime compositions with no 1's, with strict case A337451.

Programs

  • Maple
    with(numtheory): A055684 := n->(phi(n)-2)/2; seq(A055684(n), n=3..100);
  • Mathematica
    Table[(EulerPhi[n]-2)/2, {n, 3, 50}]
    Table[Length[Select[IntegerPartitions[n,{2}],!MemberQ[#,1]&&CoprimeQ@@#&]],{n,0,30}] (* Gus Wiseman, Oct 28 2020 *)

Formula

a(n) = A023022(n) - 1.
a(n) + A082023(n) = A140106(n). - Gus Wiseman, Oct 28 2020

A304709 Number of integer partitions of n whose distinct parts are pairwise coprime.

Original entry on oeis.org

1, 1, 2, 3, 6, 7, 13, 16, 23, 29, 42, 49, 69, 83, 102, 126, 161, 191, 239, 281, 336, 402, 484, 566, 672, 787, 919, 1067, 1251, 1449, 1684, 1934, 2223, 2554, 2920, 3341, 3821, 4344, 4928, 5586, 6334, 7163, 8091, 9100, 10228, 11492, 12902, 14449, 16167, 18058
Offset: 1

Views

Author

Gus Wiseman, May 17 2018

Keywords

Comments

Two parts are coprime if they have no common divisor greater than 1. For partitions of length 1 note that (1) is coprime but (x) is not coprime for x > 1.

Examples

			The a(6) = 7 integer partitions of 6 whose distinct parts are pairwise coprime are (51), (411), (321), (3111), (2211), (21111), (111111).
		

Crossrefs

Programs

  • Mathematica
    Table[Select[IntegerPartitions[n],CoprimeQ@@Union[#]&]//Length,{n,20}]
  • PARI
    lista(nn)={local(Cache=Map());
      my(excl=vector(nn, n, sum(i=1, n-1, if(gcd(i,n)>1, 2^(n-i)))));
      my(c(n, m, b)=
         if(n==0, 1,
            while(m>n || bittest(b,0), m--; b>>=1);
            my(hk=[n, m, b], z);
            if(!mapisdefined(Cache, hk, &z),
              z = if(m, self()(n, m-1, b>>1) + self()(n-m, m, bitor(b, excl[m])), 0);
              mapput(Cache, hk, z)); z));
      my(a(n)=c(n, n, 0) + 1 - numdiv(n));
      for(n=1, nn, print1(a(n), ", "))
    } \\ Andrew Howroyd, Nov 02 2019

Formula

a(n) = A304712(n) + 1 - A000005(n). - Andrew Howroyd, Nov 02 2019

A337563 Number of pairwise coprime unordered triples of positive integers > 1 summing to n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 2, 1, 4, 0, 7, 1, 7, 3, 9, 2, 15, 3, 13, 5, 17, 4, 29, 5, 20, 8, 28, 8, 42, 8, 31, 14, 42, 10, 59, 12, 45, 21, 52, 14, 77, 17, 68, 26, 69, 19, 101, 26, 84, 34, 86, 25, 138, 28, 95, 43, 111, 36, 161, 35, 118, 52, 151
Offset: 0

Views

Author

Gus Wiseman, Sep 21 2020

Keywords

Comments

Such partitions are necessarily strict.
The Heinz numbers of these partitions are the intersection of A005408 (no 1's), A014612 (triples), and A302696 (coprime).

Examples

			The a(10) = 1 through a(24) = 15 triples (empty columns indicated by dots, A..J = 10..19):
  532  .  543  .  743  753  754  .  765  B53  875  975  985  B75  987
          732     752       853     873       974  B73  B65  D73  B76
                            952     954       A73  D53  B74       B85
                            B32     972       B54       B83       B94
                                    B43       B72       B92       BA3
                                    B52       D43       D54       C75
                                    D32       D52       D72       D65
                                                        E53       D74
                                                        H32       D83
                                                                  D92
                                                                  F72
                                                                  G53
                                                                  H43
                                                                  H52
                                                                  J32
		

Crossrefs

A055684 is the version for pairs.
A220377 allows 1's, with non-strict version A307719.
A337485 counts these partitions of any length.
A337563*6 is the ordered version.
A001399(n - 3) = A069905(n) = A211540(n + 2) counts 3-part partitions.
A002865 counts partitions with no 1's, with strict case A025147.
A007359 counts pairwise coprime partitions with no 1's.
A078374 counts relatively prime strict partitions.
A200976 and A328673 count pairwise non-coprime partitions.
A302696 ranks pairwise coprime partitions.
A302698 counts relatively prime partitions with no 1's.
A305713 counts pairwise coprime strict partitions.
A327516 counts pairwise coprime partitions.
A337452 counts relatively prime strict partitions with no 1's.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n,{3}],!MemberQ[#,1]&&CoprimeQ@@#&]],{n,0,30}]
Previous Showing 11-20 of 69 results. Next