A078374 Number of partitions of n into distinct and relatively prime parts.
1, 0, 1, 1, 2, 2, 4, 4, 6, 7, 11, 10, 17, 17, 23, 26, 37, 36, 53, 53, 70, 77, 103, 103, 139, 147, 184, 199, 255, 260, 339, 358, 435, 474, 578, 611, 759, 810, 963, 1045, 1259, 1331, 1609, 1726, 2015, 2200, 2589, 2762, 3259, 3509, 4058, 4416, 5119, 5488, 6364, 6882
Offset: 1
Keywords
Examples
From _Gus Wiseman_, Oct 18 2020: (Start) The a(1) = 1 through a(13) = 17 partitions (empty column indicated by dot, A = 10, B = 11, C = 12): 1 . 21 31 32 51 43 53 54 73 65 75 76 41 321 52 71 72 91 74 B1 85 61 431 81 532 83 543 94 421 521 432 541 92 651 A3 531 631 A1 732 B2 621 721 542 741 C1 4321 632 831 643 641 921 652 731 5421 742 821 6321 751 5321 832 841 931 A21 5431 6421 7321 (End)
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- N. J. A. Sloane, Transforms
Crossrefs
Cf. A047966.
A000837 is the not necessarily strict version.
A302796 gives the Heinz numbers of these partitions.
A305713 is the pairwise coprime instead of relatively prime version.
A332004 is the ordered version.
A337452 is the case without 1's.
A000009 counts strict partitions.
A000740 counts relatively prime compositions.
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&GCD@@#==1&]],{n,15}] (* Gus Wiseman, Oct 18 2020 *)
Formula
Moebius transform of A000009.
G.f.: 1 + Sum_{n>=1} a(n)*x^n/(1 - x^n) = Product_{n>=1} (1 + x^n). - Ilya Gutkovskiy, Apr 26 2017
Comments