cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A078374 Number of partitions of n into distinct and relatively prime parts.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 4, 6, 7, 11, 10, 17, 17, 23, 26, 37, 36, 53, 53, 70, 77, 103, 103, 139, 147, 184, 199, 255, 260, 339, 358, 435, 474, 578, 611, 759, 810, 963, 1045, 1259, 1331, 1609, 1726, 2015, 2200, 2589, 2762, 3259, 3509, 4058, 4416, 5119, 5488, 6364, 6882
Offset: 1

Views

Author

Vladeta Jovovic, Dec 24 2002

Keywords

Comments

The Heinz numbers of these partitions are given by A302796, which is the intersection of A005117 (strict) and A289509 (relatively prime). - Gus Wiseman, Oct 18 2020

Examples

			From _Gus Wiseman_, Oct 18 2020: (Start)
The a(1) = 1 through a(13) = 17 partitions (empty column indicated by dot, A = 10, B = 11, C = 12):
  1   .  21   31   32   51    43    53    54    73     65     75     76
                   41   321   52    71    72    91     74     B1     85
                              61    431   81    532    83     543    94
                              421   521   432   541    92     651    A3
                                          531   631    A1     732    B2
                                          621   721    542    741    C1
                                                4321   632    831    643
                                                       641    921    652
                                                       731    5421   742
                                                       821    6321   751
                                                       5321          832
                                                                     841
                                                                     931
                                                                     A21
                                                                     5431
                                                                     6421
                                                                     7321
(End)
		

Crossrefs

Cf. A047966.
A000837 is the not necessarily strict version.
A302796 gives the Heinz numbers of these partitions.
A305713 is the pairwise coprime instead of relatively prime version.
A332004 is the ordered version.
A337452 is the case without 1's.
A000009 counts strict partitions.
A000740 counts relatively prime compositions.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&GCD@@#==1&]],{n,15}] (* Gus Wiseman, Oct 18 2020 *)

Formula

Moebius transform of A000009.
G.f.: 1 + Sum_{n>=1} a(n)*x^n/(1 - x^n) = Product_{n>=1} (1 + x^n). - Ilya Gutkovskiy, Apr 26 2017

A302698 Number of integer partitions of n into relatively prime parts that are all greater than 1.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 3, 2, 5, 4, 13, 7, 23, 18, 32, 33, 65, 50, 104, 92, 148, 153, 252, 226, 376, 376, 544, 570, 846, 821, 1237, 1276, 1736, 1869, 2552, 2643, 3659, 3887, 5067, 5509, 7244, 7672, 10086, 10909, 13756, 15168, 19195, 20735, 26237, 28708, 35418, 39207
Offset: 1

Views

Author

Gus Wiseman, Apr 11 2018

Keywords

Comments

Two or more numbers are relatively prime if they have no common divisor other than 1. A single number is not considered relatively prime unless it is equal to 1 (which is impossible in this case).
The Heinz numbers of these partitions are given by A302697.

Examples

			The a(5) = 1 through a(12) = 7 partitions (empty column indicated by dot):
  (32)  .  (43)   (53)   (54)    (73)    (65)     (75)
           (52)   (332)  (72)    (433)   (74)     (543)
           (322)         (432)   (532)   (83)     (552)
                         (522)   (3322)  (92)     (732)
                         (3222)          (443)    (4332)
                                         (533)    (5322)
                                         (542)    (33222)
                                         (632)
                                         (722)
                                         (3332)
                                         (4322)
                                         (5222)
                                         (32222)
		

Crossrefs

A000837 is the version allowing 1's.
A002865 does not require relative primality.
A302697 gives the Heinz numbers of these partitions.
A337450 is the ordered version.
A337451 is the ordered strict version.
A337452 is the strict version.
A337485 is the pairwise coprime instead of relatively prime version.
A000740 counts relatively prime compositions.
A078374 counts relatively prime strict partitions.
A212804 counts compositions with no 1's.
A291166 appears to rank relatively prime compositions.
A332004 counts strict relatively prime compositions.
A337561 counts pairwise coprime strict compositions.
A338332 is the case of length 3, with strict case A338333.

Programs

  • Maple
    b:= proc(n, i, g) option remember; `if`(n=0, `if`(g=1, 1, 0),
          `if`(i<2, 0, b(n, i-1, g)+b(n-i, min(n-i, i), igcd(g, i))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=1..60);  # Alois P. Heinz, Apr 12 2018
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],FreeQ[#,1]&&GCD@@#===1&]],{n,30}]
    (* Second program: *)
    b[n_, i_, g_] := b[n, i, g] = If[n == 0, If[g == 1, 1, 0], If[i < 2, 0, b[n, i - 1, g] + b[n - i, Min[n - i, i], GCD[g, i]]]];
    a[n_] := b[n, n, 0];
    Array[a, 60] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

Formula

a(n) = A002865(n) - A018783(n).

Extensions

Extended by Gus Wiseman, Oct 29 2020

A337485 Number of pairwise coprime integer partitions of n with no 1's, where a singleton is not considered coprime unless it is (1).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 2, 1, 2, 2, 4, 3, 5, 4, 4, 7, 8, 9, 10, 10, 9, 13, 17, 18, 17, 19, 19, 24, 29, 34, 33, 31, 31, 42, 42, 56, 55, 50, 54, 66, 77, 86, 86, 79, 81, 96, 124, 127, 126, 127, 126, 145, 181, 190, 184, 183, 192, 212, 262, 289, 278, 257, 270, 311
Offset: 0

Views

Author

Gus Wiseman, Sep 21 2020

Keywords

Comments

Such a partition is necessarily strict.
The Heinz numbers of these partitions are the intersection of A005408 (no 1's), A005117 (strict), and A302696 (coprime).

Examples

			The a(n) partitions for n = 5, 7, 12, 13, 16, 17, 18, 19 (A..H = 10..17):
  (3,2)  (4,3)  (7,5)    (7,6)  (9,7)    (9,8)      (B,7)    (A,9)
         (5,2)  (5,4,3)  (8,5)  (B,5)    (A,7)      (D,5)    (B,8)
                (7,3,2)  (9,4)  (D,3)    (B,6)      (7,6,5)  (C,7)
                         (A,3)  (7,5,4)  (C,5)      (8,7,3)  (D,6)
                         (B,2)  (8,5,3)  (D,4)      (9,5,4)  (E,5)
                                (9,5,2)  (E,3)      (9,7,2)  (F,4)
                                (B,3,2)  (F,2)      (B,4,3)  (G,3)
                                         (7,5,3,2)  (B,5,2)  (H,2)
                                                    (D,3,2)  (B,5,3)
                                                             (7,5,4,3)
		

Crossrefs

A005408 intersected with A302696 ranks these partitions.
A007359 considers all singletons to be coprime.
A327516 allows 1's, with non-strict version A305713.
A337452 is the relatively prime instead of pairwise coprime version, with non-strict version A302698.
A337563 is the restriction to partitions of length 3.
A002865 counts partitions with no 1's.
A078374 counts relatively prime strict partitions.
A200976 and A328673 count pairwise non-coprime partitions.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!MemberQ[#,1]&&CoprimeQ@@#&]],{n,0,30}]

Formula

a(n) = A007359(n) - 1 for n > 1.

A101271 Number of partitions of n into 3 distinct and relatively prime parts.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 6, 8, 9, 12, 12, 16, 15, 21, 20, 26, 25, 33, 28, 40, 36, 45, 42, 56, 44, 65, 56, 70, 64, 84, 66, 96, 81, 100, 88, 120, 90, 133, 110, 132, 121, 161, 120, 175, 140, 176, 156, 208, 153, 220, 180, 222, 196, 261, 184, 280, 225, 270, 240, 312, 230, 341, 272
Offset: 6

Views

Author

Vladeta Jovovic, Dec 19 2004

Keywords

Comments

The Heinz numbers of these partitions are the intersection of A289509 (relatively prime), A005117 (strict), and A014612 (triple). - Gus Wiseman, Oct 15 2020

Examples

			For n=10 we have 4 such partitions: 1+2+7, 1+3+6, 1+4+5 and 2+3+5.
From _Gus Wiseman_, Oct 13 2020: (Start)
The a(6) = 1 through a(18) = 15 triples (A..F = 10..15):
  321  421  431  432  532  542  543  643  653  654  754  764  765
            521  531  541  632  651  652  743  753  763  854  873
                 621  631  641  732  742  752  762  853  863  954
                      721  731  741  751  761  843  871  872  972
                           821  831  832  851  852  943  953  981
                                921  841  932  861  952  962  A53
                                     931  941  942  961  971  A71
                                     A21  A31  951  A51  A43  B43
                                          B21  A32  B32  A52  B52
                                               A41  B41  A61  B61
                                               B31  C31  B42  C51
                                               C21  D21  B51  D32
                                                         C32  D41
                                                         C41  E31
                                                         D31  F21
                                                         E21
(End)
		

Crossrefs

A000741 is the ordered non-strict version.
A001399(n-6) does not require relative primality.
A023022 counts pairs instead of triples.
A023023 is the not necessarily strict version.
A078374 counts these partitions of any length, with Heinz numbers A302796.
A101271*6 is the ordered version.
A220377 is the pairwise coprime instead of relatively prime version.
A284825 counts the case that is pairwise non-coprime also.
A337605 is the pairwise non-coprime instead of relatively prime version.
A008289 counts strict partitions by sum and length.
A007304 gives the Heinz numbers of 3-part strict partitions.
A307719 counts 3-part pairwise coprime partitions.
A337601 counts 3-part partitions whose distinct parts are pairwise coprime.

Programs

  • Maple
    m:=3: with(numtheory): g:=sum(mobius(k)*x^(m*(m+1)/2*k)/Product(1-x^(i*k),i=1..m),k=1..20): gser:=series(g,x=0,80): seq(coeff(gser,x^n),n=6..77); # Emeric Deutsch, May 31 2005
  • Mathematica
    Table[Length[Select[IntegerPartitions[n,{3}],UnsameQ@@#&&GCD@@#==1&]],{n,6,50}] (* Gus Wiseman, Oct 13 2020 *)

Formula

G.f. for the number of partitions of n into m distinct and relatively prime parts is Sum(moebius(k)*x^(m*(m+1)/2*k)/Product(1-x^(i*k), i=1..m), k=1..infinity).

Extensions

More terms from Emeric Deutsch, May 31 2005

A055684 Number of different n-pointed stars.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 2, 1, 4, 1, 5, 2, 3, 3, 7, 2, 8, 3, 5, 4, 10, 3, 9, 5, 8, 5, 13, 3, 14, 7, 9, 7, 11, 5, 17, 8, 11, 7, 19, 5, 20, 9, 11, 10, 22, 7, 20, 9, 15, 11, 25, 8, 19, 11, 17, 13, 28, 7, 29, 14, 17, 15, 23, 9, 32, 15, 21, 11, 34, 11, 35, 17, 19, 17, 29, 11
Offset: 3

Views

Author

Robert G. Wilson v, Jun 09 2000

Keywords

Comments

Does not count rotations or reflections.
This is also the distinct ways of writing a number as the sum of two positive integers greater than one that are coprimes. - Lei Zhou, Mar 19 2014
Equivalently, a(n) is the number of relatively prime 2-part partitions of n without 1's. The Heinz numbers of these partitions are the intersection of A001358 (pairs), A005408 (no 1's), and A000837 (relatively prime) or A302696 (pairwise coprime). - Gus Wiseman, Oct 28 2020

Examples

			The first star has five points and is unique. The next is the seven pointed star and it comes in two varieties.
From _Gus Wiseman_, Oct 28 2020: (Start)
The a(5) = 1 through a(17) = 7 irreducible pairs > 1 (shown as fractions, empty column indicated by dot):
  2/3  .  2/5  3/5  2/7  3/7  2/9  5/7  2/11  3/11  2/13  3/13  2/15
          3/4       4/5       3/8       3/10  5/9   4/11  5/11  3/14
                              4/7       4/9         7/8   7/9   4/13
                              5/6       5/8                     5/12
                                        6/7                     6/11
                                                                7/10
                                                                8/9
(End)
		

References

  • Mark A. Herkommer, "Number Theory, A Programmer's Guide," McGraw-Hill, New York, 1999, page 58.

Crossrefs

Cf. A023022.
Cf. A053669 smallest skip increment, A102302 skip increment of densest star polygon.
A055684*2 is the ordered version.
A082023 counts the complement (reducible pairs > 1).
A220377, A337563, and A338332 count triples instead of pairs.
A000837 counts relatively prime partitions, with strict case A078374.
A002865 counts partitions with no 1's, with strict case A025147.
A007359 and A337485 count pairwise coprime partitions with no 1's.
A302698 counts relatively prime partitions with no 1's, with strict case A337452.
A327516 counts pairwise coprime partitions, with strict case A305713.
A337450 counts relatively prime compositions with no 1's, with strict case A337451.

Programs

  • Maple
    with(numtheory): A055684 := n->(phi(n)-2)/2; seq(A055684(n), n=3..100);
  • Mathematica
    Table[(EulerPhi[n]-2)/2, {n, 3, 50}]
    Table[Length[Select[IntegerPartitions[n,{2}],!MemberQ[#,1]&&CoprimeQ@@#&]],{n,0,30}] (* Gus Wiseman, Oct 28 2020 *)

Formula

a(n) = A023022(n) - 1.
a(n) + A082023(n) = A140106(n). - Gus Wiseman, Oct 28 2020

A337563 Number of pairwise coprime unordered triples of positive integers > 1 summing to n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 2, 1, 4, 0, 7, 1, 7, 3, 9, 2, 15, 3, 13, 5, 17, 4, 29, 5, 20, 8, 28, 8, 42, 8, 31, 14, 42, 10, 59, 12, 45, 21, 52, 14, 77, 17, 68, 26, 69, 19, 101, 26, 84, 34, 86, 25, 138, 28, 95, 43, 111, 36, 161, 35, 118, 52, 151
Offset: 0

Views

Author

Gus Wiseman, Sep 21 2020

Keywords

Comments

Such partitions are necessarily strict.
The Heinz numbers of these partitions are the intersection of A005408 (no 1's), A014612 (triples), and A302696 (coprime).

Examples

			The a(10) = 1 through a(24) = 15 triples (empty columns indicated by dots, A..J = 10..19):
  532  .  543  .  743  753  754  .  765  B53  875  975  985  B75  987
          732     752       853     873       974  B73  B65  D73  B76
                            952     954       A73  D53  B74       B85
                            B32     972       B54       B83       B94
                                    B43       B72       B92       BA3
                                    B52       D43       D54       C75
                                    D32       D52       D72       D65
                                                        E53       D74
                                                        H32       D83
                                                                  D92
                                                                  F72
                                                                  G53
                                                                  H43
                                                                  H52
                                                                  J32
		

Crossrefs

A055684 is the version for pairs.
A220377 allows 1's, with non-strict version A307719.
A337485 counts these partitions of any length.
A337563*6 is the ordered version.
A001399(n - 3) = A069905(n) = A211540(n + 2) counts 3-part partitions.
A002865 counts partitions with no 1's, with strict case A025147.
A007359 counts pairwise coprime partitions with no 1's.
A078374 counts relatively prime strict partitions.
A200976 and A328673 count pairwise non-coprime partitions.
A302696 ranks pairwise coprime partitions.
A302698 counts relatively prime partitions with no 1's.
A305713 counts pairwise coprime strict partitions.
A327516 counts pairwise coprime partitions.
A337452 counts relatively prime strict partitions with no 1's.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n,{3}],!MemberQ[#,1]&&CoprimeQ@@#&]],{n,0,30}]

A337450 Number of relatively prime compositions of n with no 1's.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 0, 7, 5, 17, 17, 54, 51, 143, 168, 358, 482, 986, 1313, 2583, 3663, 6698, 9921, 17710, 26489, 46352, 70928, 121137, 188220, 317810, 497322, 832039, 1313501, 2177282, 3459041, 5702808, 9094377, 14930351, 23895672, 39084070, 62721578
Offset: 0

Views

Author

Gus Wiseman, Aug 31 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(5) = 2 through a(10) = 17 compositions (empty column indicated by dot):
  (2,3)  .  (2,5)    (3,5)    (2,7)      (3,7)
  (3,2)     (3,4)    (5,3)    (4,5)      (7,3)
            (4,3)    (2,3,3)  (5,4)      (2,3,5)
            (5,2)    (3,2,3)  (7,2)      (2,5,3)
            (2,2,3)  (3,3,2)  (2,2,5)    (3,2,5)
            (2,3,2)           (2,3,4)    (3,3,4)
            (3,2,2)           (2,4,3)    (3,4,3)
                              (2,5,2)    (3,5,2)
                              (3,2,4)    (4,3,3)
                              (3,4,2)    (5,2,3)
                              (4,2,3)    (5,3,2)
                              (4,3,2)    (2,2,3,3)
                              (5,2,2)    (2,3,2,3)
                              (2,2,2,3)  (2,3,3,2)
                              (2,2,3,2)  (3,2,2,3)
                              (2,3,2,2)  (3,2,3,2)
                              (3,2,2,2)  (3,3,2,2)
		

Crossrefs

A000740 is the version allowing 1's.
2*A055684(n) is the case of length 2.
A302697 ranks the unordered case.
A302698 is the unordered version.
A337451 is the strict version.
A337452 is the unordered strict version.
A000837 counts relatively prime partitions.
A002865 counts partitions with no 1's.
A101268 counts singleton or pairwise coprime compositions.
A212804 counts compositions with no 1's.
A291166 appears to rank relatively prime compositions.
A337462 counts pairwise coprime compositions.

Programs

  • Maple
    b:= proc(n, g) option remember; `if`(n=0,
         `if`(g=1, 1, 0), add(b(n-j, igcd(g, j)), j=2..n))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..42);
  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MemberQ[#,1]&&GCD@@#==1&]],{n,0,15}]

A337451 Number of relatively prime strict compositions of n with no 1's.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 0, 4, 2, 10, 8, 20, 14, 34, 52, 72, 90, 146, 172, 244, 390, 502, 680, 956, 1218, 1686, 2104, 3436, 4078, 5786, 7200, 10108, 12626, 17346, 20876, 32836, 38686, 53674, 67144, 91528, 113426, 152810, 189124, 245884, 343350, 428494, 552548, 719156
Offset: 0

Views

Author

Gus Wiseman, Aug 31 2020

Keywords

Comments

A strict composition of n is a finite sequence of distinct positive integers summing to n.

Examples

			The a(5) = 2 through a(10) = 8 compositions (empty column indicated by dot):
  (2,3)  .  (2,5)  (3,5)  (2,7)    (3,7)
  (3,2)     (3,4)  (5,3)  (4,5)    (7,3)
            (4,3)         (5,4)    (2,3,5)
            (5,2)         (7,2)    (2,5,3)
                          (2,3,4)  (3,2,5)
                          (2,4,3)  (3,5,2)
                          (3,2,4)  (5,2,3)
                          (3,4,2)  (5,3,2)
                          (4,2,3)
                          (4,3,2)
		

Crossrefs

A032022 does not require relative primality.
A302698 is the unordered non-strict version.
A332004 is the version allowing 1's.
A337450 is the non-strict version.
A337452 is the unordered version.
A000837 counts relatively prime partitions.
A032020 counts strict compositions.
A078374 counts strict relatively prime partitions.
A002865 counts partitions with no 1's.
A212804 counts compositions with no 1's.
A291166 appears to rank relatively prime compositions.
A337462 counts pairwise coprime compositions.
A337561 counts strict pairwise coprime compositions.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@#&&!MemberQ[#,1]&&GCD@@#==1&]],{n,0,15}]

A337459 Numbers k such that the k-th composition in standard order is a unimodal triple.

Original entry on oeis.org

7, 11, 13, 14, 19, 21, 25, 26, 28, 35, 37, 41, 42, 49, 50, 52, 56, 67, 69, 73, 74, 81, 82, 84, 97, 98, 100, 104, 112, 131, 133, 137, 138, 145, 146, 161, 162, 164, 168, 193, 194, 196, 200, 208, 224, 259, 261, 265, 266, 273, 274, 289, 290, 292, 321, 322, 324
Offset: 1

Views

Author

Gus Wiseman, Sep 07 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding triples begins:
      7: (1,1,1)     52: (1,2,3)    133: (5,2,1)
     11: (2,1,1)     56: (1,1,4)    137: (4,3,1)
     13: (1,2,1)     67: (5,1,1)    138: (4,2,2)
     14: (1,1,2)     69: (4,2,1)    145: (3,4,1)
     19: (3,1,1)     73: (3,3,1)    146: (3,3,2)
     21: (2,2,1)     74: (3,2,2)    161: (2,5,1)
     25: (1,3,1)     81: (2,4,1)    162: (2,4,2)
     26: (1,2,2)     82: (2,3,2)    164: (2,3,3)
     28: (1,1,3)     84: (2,2,3)    168: (2,2,4)
     35: (4,1,1)     97: (1,5,1)    193: (1,6,1)
     37: (3,2,1)     98: (1,4,2)    194: (1,5,2)
     41: (2,3,1)    100: (1,3,3)    196: (1,4,3)
     42: (2,2,2)    104: (1,2,4)    200: (1,3,4)
     49: (1,4,1)    112: (1,1,5)    208: (1,2,5)
     50: (1,3,2)    131: (6,1,1)    224: (1,1,6)
		

Crossrefs

A337460 is the non-unimodal version.
A000217(n - 2) counts 3-part compositions.
6*A001399(n - 6) = 6*A069905(n - 3) = 6*A211540(n - 1) counts strict 3-part compositions.
A001399(n - 3) = A069905(n) = A211540(n + 2) counts 3-part partitions.
A001399(n - 6) = A069905(n - 3) = A211540(n - 1) counts strict 3-part partitions.
A001523 counts unimodal compositions.
A007052 counts unimodal patterns.
A011782 counts unimodal permutations.
A115981 counts non-unimodal compositions.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Triples are A014311, with strict case A337453.
- Sum is A070939.
- Runs are counted by A124767.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Heinz number is A333219.
- Combinatory separations are counted by A334030.
- Non-unimodal compositions are A335373.
- Non-co-unimodal compositions are A335374.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,1000],Length[stc[#]]==3&&!MatchQ[stc[#],{x_,y_,z_}/;x>y
    				

Formula

Complement of A335373 in A014311.

A338333 Number of relatively prime 3-part strict integer partitions of n with no 1's.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 4, 7, 6, 10, 8, 14, 12, 18, 16, 24, 18, 30, 25, 34, 30, 44, 31, 52, 42, 56, 49, 69, 50, 80, 64, 83, 70, 102, 71, 114, 90, 112, 100, 140, 98, 153, 117, 153, 132, 184, 128, 195, 154, 196, 169, 234, 156, 252, 196, 241
Offset: 0

Views

Author

Gus Wiseman, Oct 30 2020

Keywords

Comments

The Heinz numbers of these partitions are the intersection of A005117 (strict), A005408 (no 1's), A014612 (length 3), and A289509 (relatively prime).

Examples

			The a(9) = 1 through a(19) = 14 triples (A = 10, B = 11, C = 12, D = 13, E = 14):
  432   532   542   543   643   653   654   754   764   765   865
              632   732   652   743   753   763   854   873   874
                          742   752   762   853   863   954   964
                          832   932   843   943   872   972   973
                                      852   952   953   A53   982
                                      942   B32   962   B43   A54
                                      A32         A43   B52   A63
                                                  A52   D32   A72
                                                  B42         B53
                                                  C32         B62
                                                              C43
                                                              C52
                                                              D42
                                                              E32
		

Crossrefs

A001399(n-9) does not require relative primality.
A005117 /\ A005408 /\ A014612 /\ A289509 gives the Heinz numbers.
A055684 is the 2-part version.
A284825 counts the case that is also pairwise non-coprime.
A337452 counts these partitions of any length.
A337563 is the pairwise coprime instead of relatively prime version.
A337605 is the pairwise non-coprime instead of relative prime version.
A338332 is the not necessarily strict version.
A338333*6 is the ordered version.
A000837 counts relatively prime partitions.
A008284 counts partitions by sum and length.
A078374 counts relatively prime strict partitions.
A101271 counts 3-part relatively prime strict partitions.
A220377 counts 3-part pairwise coprime strict partitions.
A337601 counts 3-part partitions whose distinct parts are pairwise coprime.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n,{3}],UnsameQ@@#&&!MemberQ[#,1]&&GCD@@#==1&]],{n,0,30}]
Showing 1-10 of 11 results. Next