cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 50 results. Next

A145899 Numbers n such that sigma(x) = n has more solutions x than any smaller n.

Original entry on oeis.org

1, 12, 24, 72, 168, 240, 336, 360, 504, 576, 720, 1440, 2880, 4320, 5760, 8640, 10080, 15120, 17280, 20160, 30240, 40320, 60480, 120960, 181440, 241920, 362880, 483840, 604800, 725760, 1088640, 1209600, 1451520, 2177280, 2419200, 2903040, 3628800
Offset: 1

Views

Author

Douglas E. Iannucci, Oct 22 2008

Keywords

Comments

Sequence A206027 has the number of solutions.

Examples

			sigma(m)=1 has only one solution: m=1.
sigma(m)=12 has two solutions, m=6 and m=11; 12 is the smallest number with more than one such solutions.
sigma(m)=24 has three solutions, m=14,m=15 and m=23; 24 is the smallest number with more than two such solutions.
sigma(m)=72 has five solutions, m=30, m=46, m=51, m=55 and m=71; 72 is the smallest number with more than three such solutions.
		

Crossrefs

Cf. A000203 (sum of divisors of n), A054973 (number of numbers whose divisors sum to n), A007368 (smallest k such that sigma(x) = k has exactly n solutions).
Cf. A206027.
Cf. Untouchable numbers (A005114), sigma-untouchable numbers (A007369) and highly touchable numbers (A238895).

Programs

  • Mathematica
    t = DivisorSigma[1, Range[10^6]]; t2 = Sort[Tally[t]]; mn = 0; t3 = {}; Do[If[t2[[n]][[2]] > mn, mn = t2[[n]][[2]]; AppendTo[t3, t2[[n]][[1]]]], {n, Length[t2]}]; t3 (* T. D. Noe, Feb 03 2012 *)
  • PARI
    {m=3650000; v=vectorsmall(m); for(n=1, m, s=sigma(n); if(s<=m, v[s]++)); g=0; j=1; while(j<=m, if(v[j]<=g, j++, g=v[j]; print1(j, ",")))} \\ Klaus Brockhaus, Oct 27 2008

Extensions

Extended beyond a(15) by Klaus Brockhaus, Oct 27 2008

A048995 Numbers that are not the sum of the nontrivial factors (excluding 1 and n) of some natural number.

Original entry on oeis.org

1, 4, 51, 87, 95, 119, 123, 145, 161, 187, 205, 209, 215, 237, 245, 247, 261, 267, 275, 287, 289, 291, 303, 305, 321, 323, 325, 335, 341, 371, 405, 407, 425, 429, 447, 471, 473, 497, 515, 517, 519, 529, 539, 551, 555, 561, 575, 583, 611, 623, 625, 627, 657
Offset: 1

Views

Author

Bill Taylor (W.Taylor(AT)math.canterbury.ac.nz)

Keywords

Crossrefs

Complement of A048050.
Cf. A005114 (the same property with the sum of proper divisors) and A007369 (the same property with the sum of all divisors).

Programs

  • Mathematica
    a048995[n_Integer] := Module[{t = Table[i, {i, n}], a048050, k},
      a048050[m_] := Plus @@ Take[Divisors[m], {2, -2}];
      Do[
       If[a048050[k] == 0 || a048050[k] > n, Null, t[[a048050[k]]] = 0],
       {k, 2, n^2}];
      Drop[DeleteDuplicates[t], {2}]
    ]; a048995[660] (* Michael De Vlieger, Nov 30 2014 *)
  • PARI
    mx=8479; v=vector(mx); for(i=2, mx^2, ch=sigma(i)-i-1; if(ch<=mx, if(ch>0, v[ch]=1))); c=0; for(i=1, mx, if(v[i]==0, c++; write("b048995.txt", c " " i))) /* Donovan Johnson, Feb 11 2013 */

Extensions

Corrected and extended by Jud McCranie

A240667 a(n) is the GCD of the solutions x of sigma(x) = n; sigma(n) = A000203(n) = sum of divisors of n.

Original entry on oeis.org

1, 0, 2, 3, 0, 5, 4, 7, 0, 0, 0, 1, 9, 13, 8, 0, 0, 1, 0, 19, 0, 0, 0, 1, 0, 0, 0, 12, 0, 29, 1, 1, 0, 0, 0, 22, 0, 37, 18, 27, 0, 1, 0, 43, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 49, 0, 0, 1, 0, 61, 32, 0, 0, 0, 0, 67, 0, 0, 0, 1, 0, 73, 0, 0, 0, 45, 0, 1, 0, 0
Offset: 1

Views

Author

Michel Marcus, Apr 10 2014

Keywords

Comments

From n = 1 to 5, the least integers such that a(x) = n, depending on if singletons (see A007370 and A211656) are accepted or not, are 1, 3, 4, 7, 6 or 12, 126, 124, 210, 22152.
Is it possible to find an integer n such that a(n) = 6? Answer: n = A241625(6) = 6187272.

Examples

			There are no integers such that sigma(x) = 2, so a(2) = 0.
There is a single integer, x = 2, such that sigma(x) = 3, so a(3) = 2.
There are 2 integers, x = 6 and 11, such that sigma(x)=12, their gcd is 1, so a(12) = 1.
		

Crossrefs

Programs

  • Maple
    A240667 := n -> igcd(op(select(k->sigma(k)=n, [$1..n]))):
    seq(A240667(n), n=1..82); # Peter Luschny, Apr 13 2014
  • Mathematica
    a[n_] := GCD @@ Select[Range[n], DivisorSigma[1, #] == n&];
    Array[a, 100] (* Jean-François Alcover, Jul 30 2018 *)
  • PARI
    sigv(n) =  select(i->sigma(i) == n, vector(n, i, i));
    a(n) = {v = sigv(n); if (#v == 0, 0, gcd(v));}
    
  • PARI
    a(n) = my(s = invsigma(n)); if(#s, gcd(s), 0); \\ Amiram Eldar, Dec 19 2024, using Max Alekseyev's invphi.gp

Formula

a(A007369(n)) = 0.

A083531 First difference sequence of A002191. Differences between possible values for sum of divisors of n.

Original entry on oeis.org

2, 1, 2, 1, 1, 4, 1, 1, 1, 3, 2, 4, 4, 2, 1, 1, 4, 2, 1, 1, 2, 2, 4, 6, 2, 1, 3, 2, 1, 5, 4, 2, 4, 2, 4, 6, 1, 2, 3, 2, 4, 2, 4, 2, 2, 2, 6, 1, 3, 2, 1, 1, 4, 1, 5, 2, 4, 6, 2, 4, 2, 2, 2, 2, 4, 3, 3, 2, 4, 2, 1, 3, 6, 2, 1, 3, 2, 4, 6, 2, 4, 1, 5, 2, 4, 2, 4, 6, 2, 6, 4, 3, 1, 2, 2, 4, 2, 4, 2, 6, 2, 2, 2, 4, 6
Offset: 1

Views

Author

Labos Elemer, May 20 2003

Keywords

Examples

			8 and 12 are the 6th and 7th possible values for sigma(x), since they are sum of divisors of x = 7 and x = 11 respectively, while 9, 10, 11 are impossible ones so 12 - 8 = 4 = a(6) = A002191(7) - A002191(6).
From _Michael De Vlieger_, Jul 22 2017: (Start)
First position of values:
Value   First position
    1         2
    2         1
    3        10
    4         6
    5        30
    6        24
    7       277
    8       165
    9       509
   10       150
   11       824
   12       400
   13     10970
   14      1400
   15     10448
   16      1182
   17     18731
   18      2218
   19    209237
   20      3420
   21    127385
   22      6910
   23     28899
   24      5377
(End)
		

Crossrefs

Cf. A002191, A007609, A007369, A083532, A083533, A083534, A083535, A083536, A109323 (start of record gaps in A002191).

Programs

  • Mathematica
    t=Table[DivisorSigma[1, w], {w, 1, 25000}]; u=Union[%]; Delete[u-RotateRight[u], 1]
    (* Second program: *)
    With[{nn = 300}, Differences@ TakeWhile[Union@ DivisorSigma[1, Range@ nn], # < nn &]] (* Michael De Vlieger, Jul 22 2017 *)

A299762 Irregular triangle T(n,k) read by rows in which row n lists the positive integers whose sum of divisors is n, or 0 if no such integer exists.

Original entry on oeis.org

1, 0, 2, 3, 0, 5, 4, 7, 0, 0, 0, 6, 11, 9, 13, 8, 0, 0, 10, 17, 0, 19, 0, 0, 0, 14, 15, 23, 0, 0, 0, 12, 0, 29, 16, 25, 21, 31, 0, 0, 0, 22, 0, 37, 18, 27, 0, 20, 26, 41, 0, 43, 0, 0, 0, 33, 35, 47, 0, 0, 0, 0, 0, 34, 53, 0, 28, 39, 49, 0, 0, 24, 38, 59, 0, 61, 32, 0, 0, 0, 0, 67, 0, 0, 0, 30, 46, 51, 55, 71, 0, 73
Offset: 1

Views

Author

Omar E. Pol, Mar 12 2018

Keywords

Comments

Essentially the same as the triangle described in the example section of A085790, but with 0's added in empty rows.
Are the records the same as A008578?

Examples

			First 24 rows of triangle T(n,k):
-----------------------
. n / k:  1   2   3 ...
-----------------------
| 1|      1;
| 2|      0;
| 3|      2;
| 4|      3;
| 5|      0;
| 6|      5;
| 7|      4;
| 8|      7;
| 9|      0;
|10|      0;
|11|      0;
|12|      6, 11;
|13|      9;
|14|     13;
|15|      8;
|16|      0;
|17|      0;
|18|     10, 17;
|19|      0;
|20|     19;
|21|      0;
|22|      0;
|23|      0;
|24|     14, 15, 23;
...
For n = 23 there are no positive integers whose sum of divisors is 23, so T(23, 1) = 0, which is the only element in the 23rd row of the triangle.
For n = 24 there are three positive integers whose sum of divisors is 24; they are 14, 15 and 23, since sigma(14) = 1 + 2 + 7 + 14 = 24, sigma(15) = 1 + 3 + 5 + 15 = 24 and sigma(23) = 1 + 23 = 24, so the 24th row of the triangle is [14, 15, 23].
		

Crossrefs

Row sums give A258913.
Column 1 gives A051444.
Right border gives A057637.
Positive terms give A085790.
Row n has A054973(n) positive integers.
Positive terms in the first column give A002192.
Indices of the rows that contain a zero give A007369.
Indices of the rows that contain positive terms give A002191.

Programs

  • Mathematica
    With[{nn = 74}, ReplacePart[ConstantArray[{0}, nn], PositionIndex@ Array[DivisorSigma[1, #] &, nn]]] // Flatten (* Michael De Vlieger, Mar 16 2018 *)

Formula

sigma(T(n,k)) = n, if T(n,k) >= 1.

A078923 Possible values of sigma(n)-n.

Original entry on oeis.org

0, 1, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74
Offset: 1

Views

Author

Benoit Cloitre, Dec 15 2002

Keywords

Comments

To test whether k>1 is in the sequence, it suffices to check values of n up to (k-1)^2, since sigma(n)-n >= sqrt(n)+1 if n is composite.
Erdős (Elem. Math. 28 (1973), 83-86) shows that the density of even integers in the range of a(n) is strictly less than 1/2. The argument of Coppersmith (1987) shows that the range of a(n) has density at most 47/48 < 1. - N. J. A. Sloane, Dec 21 2019
The lower asymptotic density is at least 1/2 by the 'almost all' binary Goldbach conjecture, independently proved by Nikolai Chudakov, Johannes van der Corput, and Theodor Estermann. (In this context, this shows that the density of the odd numbers of this form is 1 (consider A001065(p*q) for prime p, q); full Goldbach would prove that 5 is the only odd number absent from this sequence.) - Charles R Greathouse IV, Dec 14 2022

Crossrefs

Cf. A000203, A001065, A002191, A007369. Complement of A005114.

Programs

  • PARI
    lista(nn)=for (n=0, nn, if (n==1, kmax=2, kmax=(n-1)^2); for (k=1, kmax, if (sigma(k)-k == n, print1(n, ", "); break););); \\ Michel Marcus, Nov 11 2014

Extensions

Edited by Dean Hickerson, Dec 19 2002
Offset fixed by Michel Marcus, Dec 19 2014

A257670 Minimum term in the sigma(x) -> x subtree whose root is n.

Original entry on oeis.org

1, 2, 2, 2, 5, 5, 2, 2, 9, 10, 11, 5, 9, 9, 2, 16, 17, 10, 19, 19, 21, 22, 23, 2, 25, 26, 27, 5, 29, 29, 16, 16, 33, 34, 35, 22, 37, 37, 10, 27, 41, 19, 43, 43, 45, 46, 47, 33, 49, 50, 51, 52, 53, 34, 55, 5, 49, 58, 59, 2, 61, 61, 16, 64, 65, 66, 67, 67, 69
Offset: 1

Views

Author

Michel Marcus, May 03 2015

Keywords

Examples

			We have the following trees (a <- b means sigma(a) = b):
  2 <-- 3 <-- 4 <-- 7 <-- 8 <-- 15 <-- 24 <-- 60 <-- ...
                    9 <-- 13 <-- 14 <-’
  5 <-- 6 <-- 12 <-- 28 <-- 56 <-- 120 <-- ...
        11 <-’             /
       10 <-- 18 <-- 39 <-’
The number 1 has strictly speaking an arrow to itself, so it is not part of a tree. (For all n > 1, sigma(n) > n, so no other fixed point or longer "cycle" can exist.) But actually we rather consider connected components, and let a(1) = 1 as the smallest element of this connected component.
a(2) = 2, since there is no smaller x such that sigma(x) = 2: the subtree with root 2 is reduced to a single node: 2. Similarly, a(m) = m for all m in A007369.
For n=3, since sigma(2) = 3, the tree whose root is 3 has 2 nodes: 2 and 3, and the smallest one is 2, hence a(3) = 2.
Similarly, although 24 occurs directly first at sigma(14), it is also reached from 15 which is in turn reached, via intermediate steps, from 2. Thus, the subtree with root 24 has as 2 as smallest element, whence a(24) = 2.
		

Crossrefs

Cf. A000203 (sigma), A007369 (sigma(x) = n has no solution).
Cf. A216200 (number of disjoint trees), A257348 (minimal node of all trees).
Cf. A257669 (number of terms in current tree).

Programs

  • PARI
    lista(nn) = {my(v = vector(nn)); v[1] = 1; for (i=2, nn, my(s = i); while (s <= nn, if (v[s] == 0, v[s] = i); s = sigma(s););); for (i=1, nn, if (v[i] == 0, v[i] = i);); v;} \\ Michel Marcus, Nov 19 2019
    
  • PARI
    A257670(n)=if(n>2,vecmin(concat(apply(self,invsigma(n)),n)),n) \\ See Alekseyev-link for invsigma(). - David A. Corneth and M. F. Hasler, Nov 20 2019

Formula

a(m) = m for m in A007369: sigma(x) = m has no solution. [Corrected by M. F. Hasler, Nov 19 2019]
a(A007497(n)) = 2; a(A051572(n)) = 5; a(A257349(n)) = 16. (These sequences being the trajectory of 2, 5 resp. 16 under iterations of sigma = A000203.)

Extensions

Edited by M. F. Hasler, Nov 19 2019

A231369 Numbers n such that antisigma(x) = n has no solution, where antisigma(m) = A024816(m) = the sum of the nondivisors of m that are between 1 and m.

Original entry on oeis.org

1, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75
Offset: 1

Views

Author

Jaroslav Krizek, Nov 09 2013

Keywords

Comments

Complement of A231368.
Numbers n such that A231367(n) = A231366(n) = 0.

Crossrefs

Cf.: A007369 (numbers n such that sigma(x) = n has no solution), A024816, A231365, A231366, A231367, A231368.

A258913 a(n) is the sum of all numbers k for which sigma(k) = n.

Original entry on oeis.org

1, 0, 2, 3, 0, 5, 4, 7, 0, 0, 0, 17, 9, 13, 8, 0, 0, 27, 0, 19, 0, 0, 0, 52, 0, 0, 0, 12, 0, 29, 41, 52, 0, 0, 0, 22, 0, 37, 18, 27, 0, 87, 0, 43, 0, 0, 0, 115, 0, 0, 0, 0, 0, 87, 0, 67, 49, 0, 0, 121, 0, 61, 32, 0, 0, 0, 0, 67, 0, 0, 0, 253, 0, 73, 0, 0, 0
Offset: 1

Views

Author

Jeppe Stig Nielsen, Jun 14 2015

Keywords

Comments

Here sigma is A000203, the sum-of-divisors function.
a(n) is the sum of the n-th row in A085790.
We can divide the set of natural numbers into three classes based on whether a(n)n. The last class is A258914. Are there any n in the second category, i.e., n such that a(n)=n, other than n=1 (see link)?
It is natural to further divide the class a(n)A007369 (not in image of sigma), which is all n for which A054973(n)=0. The second one of these, the case 01) all of A007370 (just one pre-image of n under sigma, equivalently A054973(n)=1), but also includes some terms that have more than one pre-image, see A258931.
If there exists a number n>1 such that a(n)=n, then n > 2.5*10^10. - Giovanni Resta, Jun 15 2015
Row sums of A299762. - Omar E. Pol, Mar 14 2018

Examples

			To find a(24), note that the only values of k with sigma(k)=24 are k=14,15,23; therefore a(24)=14+15+23=52.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[k*Boole[DivisorSigma[1, k] == n], {k, 1, n}]; Array[a, 80] (* Jean-François Alcover, Jun 15 2015 *)
  • PARI
    a(n)=sum(k=1,n,if(sigma(k)==n,k))
    
  • PARI
    first(n)=my(v=vector(n),s); for(k=1,n,s=sigma(k);if(s<=n,v[s]+=k));v \\ Charles R Greathouse IV, Jun 15 2015
    
  • PARI
    a(n) = vecsum(invsigma(n)); \\ Amiram Eldar, Dec 16 2024, using Max Alekseyev's invphi.gp

A060657 Odd values of the sum-of-divisors function sigma (A000203) (without repetitions).

Original entry on oeis.org

1, 3, 7, 13, 15, 31, 39, 57, 63, 91, 93, 121, 127, 133, 171, 183, 195, 217, 255, 307, 363, 381, 399, 403, 465, 511, 549, 553, 741, 781, 819, 847, 855, 871, 921, 931, 961, 993, 1023, 1093, 1143, 1209, 1281, 1407, 1651, 1659, 1723, 1729, 1767, 1815, 1893, 1953
Offset: 1

Views

Author

Robert G. Wilson v, Apr 18 2001

Keywords

Comments

That is, the odd values produced by the sigma function.
Odd terms of A002191. - Michel Marcus, Jun 10 2014

Examples

			a(7) = 39 because sigma(18) = 1+2+3+6+9+18 = 39, an odd number.
		

Crossrefs

Programs

  • Mathematica
    nn = 2000; Union[Select[DivisorSigma[1, Range[nn]], OddQ[#] && # <= nn &]]  (* Harvey P. Dale, Mar 12 2011 *)
  • PARI
    is(k) = k % 2 && invsigmaNum(k) > 0; \\ Amiram Eldar, Dec 26 2024, using Max Alekseyev's invphi.gp

Extensions

Name edited by Giovanni Resta, Jan 08 2020
Previous Showing 21-30 of 50 results. Next