cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A174514 Partial sums of A048995.

Original entry on oeis.org

1, 5, 56, 143, 238, 357, 480, 625, 786, 973, 1178, 1387, 1602, 1839, 2084, 2331, 2592, 2859, 3134, 3421, 3710, 4001, 4304, 4609, 4930, 5253, 5578, 5913, 6254, 6625, 7030, 7437, 7862, 8291, 8738, 9209, 9682, 10179, 10694, 11211, 11730, 12259, 12798, 13349, 13904, 14465, 15040, 15623, 16234, 16857, 17482, 18109, 18766
Offset: 1

Views

Author

Jonathan Vos Post, Nov 28 2010

Keywords

Comments

The subsequence of values which are themselves in A048995 begins: 1, 625. The subsequence of primes begins 5, 4001, 8291, 9209.

Examples

			a(8) = 1 + 4 + 51 + 87 + 95 + 119 + 123 + 145 = 625 = 5^4.
		

Crossrefs

Formula

a(n) = SUM[i=1..n] A048995(i) = SUM[i=1..n] (numbers that are not the sum of the nontrivial factors, excluding 1 and i, of some natural number).

A048050 Chowla's function: sum of divisors of n except for 1 and n.

Original entry on oeis.org

0, 0, 0, 2, 0, 5, 0, 6, 3, 7, 0, 15, 0, 9, 8, 14, 0, 20, 0, 21, 10, 13, 0, 35, 5, 15, 12, 27, 0, 41, 0, 30, 14, 19, 12, 54, 0, 21, 16, 49, 0, 53, 0, 39, 32, 25, 0, 75, 7, 42, 20, 45, 0, 65, 16, 63, 22, 31, 0, 107, 0, 33, 40, 62, 18, 77, 0, 57, 26, 73, 0, 122, 0, 39, 48, 63, 18, 89
Offset: 1

Views

Author

Keywords

Comments

a(n) = 0 if and only if n is a noncomposite number (cf. A008578). - Omar E. Pol, Jul 31 2012
If n is semiprime, a(n) = A008472(n). - Wesley Ivan Hurt, Aug 22 2013
If n = p*q where p and q are distinct primes then a(n) = p+q.
If k,m > 1 are coprime, then a(k*m) = a(k)*a(m) + (m+1)*a(k) + (k+1)*a(m) + k + m. - Robert Israel, Apr 28 2015
a(n) is also the total number of parts in the partitions of n into equal parts that contain neither 1 nor n as a part (see example). More generally, a(n) is the total number of parts congruent to 0 mod k in the partitions of k*n into equal parts that contain neither k nor k*n as a part. - Omar E. Pol, Nov 24 2019
Named after the Indian-American mathematician Sarvadaman D. S. Chowla (1907-1995). - Amiram Eldar, Mar 09 2024

Examples

			For n = 20 the divisors of 20 are 1,2,4,5,10,20, so a(20) = 2+4+5+10 = 21.
On the other hand, the partitions of 20 into equal parts that contain neither 1 nor 20 as a part are [10,10], [5,5,5,5], [4,4,4,4,4], [2,2,2,2,2,2,2,2,2,2]. There are 21 parts, so a(20) = 21. - _Omar E. Pol_, Nov 24 2019
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 92.

Crossrefs

Programs

  • Haskell
    a048050 1 = 0
    a048050 n = (subtract 1) $ sum $ a027751_row n
    -- Reinhard Zumkeller, Feb 09 2013
    
  • Magma
    A048050:=func< n | n eq 1 or IsPrime(n) select 0 else &+[ a: a in Divisors(n) | a ne 1 and a ne n ] >; [ A048050(n): n in [1..100] ]; // Klaus Brockhaus, Mar 04 2011
    
  • Maple
    A048050 := proc(n) if n > 1 then numtheory[sigma](n)-1-n ; else 0; end if; end proc:
  • Mathematica
    f[n_]:=Plus@@Divisors[n]-n-1; Table[f[n],{n,100}] (*Vladimir Joseph Stephan Orlovsky, Sep 13 2009*)
    Join[{0},DivisorSigma[1,#]-#-1&/@Range[2,80]] (* Harvey P. Dale, Feb 25 2015 *)
  • PARI
    a(n)=if(n>1,sigma(n)-n-1,0) \\ Charles R Greathouse IV, Nov 20 2012
    
  • Python
    from sympy import divisors
    def a(n): return sum(divisors(n)[1:-1]) # Indranil Ghosh, Apr 26 2017
    
  • Python
    from sympy import divisor_sigma
    def A048050(n): return 0 if n == 1 else divisor_sigma(n)-n-1 # Chai Wah Wu, Apr 18 2021

Formula

a(n) = A000203(n) - A065475(n).
a(n) = A001065(n) - 1, n > 1.
For n > 1: a(n) = Sum_{k=2..A000005(n)-1} A027750(n,k). - Reinhard Zumkeller, Feb 09 2013
a(n) = A000203(n) - n - 1, n > 1. - Wesley Ivan Hurt, Aug 22 2013
G.f.: Sum_{k>=2} k*x^(2*k)/(1 - x^k). - Ilya Gutkovskiy, Jan 22 2017

A007369 Numbers n such that sigma(x) = n has no solution.

Original entry on oeis.org

2, 5, 9, 10, 11, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 33, 34, 35, 37, 41, 43, 45, 46, 47, 49, 50, 51, 52, 53, 55, 58, 59, 61, 64, 65, 66, 67, 69, 70, 71, 73, 75, 76, 77, 79, 81, 82, 83, 85, 86, 87, 88, 89, 92, 94, 95, 97, 99, 100, 101, 103, 105, 106, 107, 109, 111, 113
Offset: 1

Views

Author

Keywords

Comments

With an initial 1, may be constructed inductively in stages from the list L = {1,2,3,....} by the following sieve procedure. Stage 1. Add 1 as the first term of the sequence a(n) and strike off 1 from L. Stage n+1. Add the first (i.e. leftmost) term k of L as a new term of the sequence a(n) and strike off k, sigma(k), sigma(sigma(k)),.... from L. - Joseph L. Pe, May 08 2002
This sieve is a special case of a more general sieve. Let D be a subset of N and let f be an injection on D satisfying f(n) > n. Define the sieve process as follows: 1. Start with the empty sequence S and let E = D. 2. Append the smallest element s of E to S. 3. Remove s, f(s), f(f(s)), f(f(f(s))), ... from E. 4. Go to step 2. After this sieving process, S = D - f(D). To get the current sequence, take f = sigma and D = {n | n >= 2}. - Max Alekseyev, Aug 08 2005
By analogy with the untouchable numbers (A005114), these numbers could be named "sigma-untouchable". - Daniel Lignon, Mar 28 2014
The asymptotic density of this sequence is 1 (Niven, 1951, Rao and Murty, 1979). - Amiram Eldar, Jul 23 2020

Examples

			a(4) = 10 because there is no x < 10 whose sigma(x) = 10.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement of A002191.
See A083532 for the gaps, i.e., first differences.
See A048995 for the missed sums of nontrivial divisors.

Programs

  • Mathematica
    a = {}; Do[s = DivisorSigma[1, n]; a = Append[a, s], {n, 1, 115} ]; Complement[ Table[ n, {n, 1, 115} ], Union[a] ]
  • PARI
    list(lim)=my(v=List(),u=vectorsmall(lim\1),t); for(n=1,lim, t=sigma(n); if(t<=lim, u[t]=1)); for(n=2,lim, if(u[n]==0, listput(v,n))); Vec(v) \\ Charles R Greathouse IV, Mar 09 2017
    
  • PARI
    A007369_list(LIM,m=0,L=List(),s)={for(n=2,LIM,(s=sigma(n-1))>LIM || bittest(m,s) || m+=1<M. F. Hasler, Mar 12 2018

Formula

A175192(a(n)) = 0, A054973(a(n)) = 0. - Jaroslav Krizek, Mar 01 2010
a(n) < 2n + sqrt(8n). - Charles R Greathouse IV, Oct 23 2015

Extensions

More terms from David W. Wilson

A070015 Least m such that the sum of the aliquot parts of m (A001065) equals n, or 0 if no such number exists.

Original entry on oeis.org

1, 2, 0, 4, 9, 0, 6, 8, 10, 15, 14, 21, 121, 27, 22, 16, 12, 39, 289, 65, 34, 18, 20, 57, 529, 95, 46, 69, 28, 115, 841, 32, 58, 45, 62, 93, 24, 155, 1369, 217, 44, 63, 30, 50, 82, 123, 52, 129, 2209, 75, 40, 141, 0, 235, 42, 36, 106, 99, 68, 265, 3481, 371, 118, 64, 56
Offset: 0

Views

Author

Labos Elemer, Apr 12 2002

Keywords

Comments

For odd n >= 9, a(n) <= A073046((n-1)/2). - Max Alekseyev, Sep 01 2025

Examples

			For n=128: a(128)=16129, divisors={1,127,16129}, 1+127=sigma(n)-n=128 and 16129 is the smallest.
		

Crossrefs

See A359132 for another version.

Programs

  • Mathematica
    f[x_] := DivisorSigma[1, x]-x; t=Table[0, {128}]; Do[c=f[n]; If[c<129&&t[[c]]==0, t[[c]]=n], {n, 1000000}]; t

Formula

a(n) = min(x, A001065(x)=n) or a(n)=0 if n is an untouchable number (i.e., if from A005114).

Extensions

a(0)=1 prepended by Max Alekseyev, Sep 01 2025

A070016 Least m such that Chowla's function value of m [A048050(m)] equals n or 0 if no such number exists.

Original entry on oeis.org

0, 4, 9, 0, 6, 8, 10, 15, 14, 21, 121, 27, 22, 16, 12, 39, 289, 65, 34, 18, 20, 57, 529, 95, 46, 69, 28, 115, 841, 32, 58, 45, 62, 93, 24, 155, 1369, 217, 44, 63, 30, 50, 82, 123, 52, 129, 2209, 75, 40, 141, 0, 235, 42, 36, 106, 99, 68, 265, 3481, 371, 118, 64, 56, 117
Offset: 1

Views

Author

Labos Elemer, Apr 12 2002

Keywords

Comments

Remark that A070016(n)=A070015(n+1) in accordance with A048995(k)+1=A005114(k).

Examples

			n=127: a(n)=16129, divisors={1,127,16129}, 127=sigma[n]-n-1=127 and 16129 is the smallest.
		

Crossrefs

Programs

  • Mathematica
    f1[x_] := DivisorSigma[1, x]-x-1; t=Table[0, {128}]; Do[b=f1[n]; If[b<129&&t[[b]]==0, t[[b]]=n], {n, 1, 1000000}]; t

Formula

a(n)=Min{x; A048050(x)=n} or a(n)=0 if n is from A048995.

A049030 Sum of sigma(j) for 1<=j<10^n, where sigma(j) = A048050(j) is the sum of the proper divisors >1 of j (excluding 1 and n).

Original entry on oeis.org

16, 3034, 320243, 32226805, 3224444759, 322465138002, 32246681892518, 3224670122682648, 322467031114802292, 32246703322412473945, 3224670334023621455211, 322467033422357645316809, 32246703342390510922780778, 3224670334240928188556405242
Offset: 1

Views

Author

Keywords

Examples

			For n = 1, the sum of sigma(j), for j < 10 is 0 + 0 + 0 + 2 + 0 + 5 + 0 + 6 + 3 = 16, so a(1) = 16.
		

Crossrefs

Cf. A072691 (Pi^2/12).

Formula

At a(3) = 320243, for example, take a(3) from A049000: 820741 - 500498 = 320243. Compute 500498 from 999*1000/2 = 499500, split evenly and reverse to 500499 - 1 = 500498. Add a 9 and 0 for each successive term.
a(n) = A049000(n) - 10^n * (10^n + 1) / 2 + 2 ~ (Pi^2/12 - 1/2) * 10^(2*n). - Amiram Eldar, Feb 16 2020

Extensions

More terms from Amiram Eldar, Feb 16 2020

A291109 Numbers that are not the sum of the squarefree divisors of some natural number.

Original entry on oeis.org

2, 5, 7, 9, 10, 11, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 28, 29, 31, 33, 34, 35, 37, 39, 40, 41, 43, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 63, 64, 65, 66, 67, 69, 70, 71, 73, 75, 76, 77, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 97, 99, 100, 101, 103, 105, 106, 107, 109, 111
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 17 2017

Keywords

Comments

Impossible values for A048250 (numbers k in increasing order such that A048250(m) = k has no solution).
Numbers that are not of the form Product (p_i + 1), p is a prime, so all odd numbers (except 1 and 3) are in this sequence.
Also numbers that are not the sum of the divisors of some squarefree number.

Crossrefs

Programs

  • Maple
    sort(convert({$1..1000} minus map(numtheory:-sigma, select(numtheory:-issqrfree, {$1..1000})),list)); # Robert Israel, Jun 26 2018
  • Mathematica
    TakeWhile[Complement[Range@ #, Union@ Table[Total@ Select[Divisors@ n, SquareFreeQ], {n, 2 #}]], Function[k, k <= #]] &@ 111
Showing 1-7 of 7 results.