cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A015882 Numbers k such that sigma(k) = sigma(k+12).

Original entry on oeis.org

35, 104, 285, 287, 310, 329, 340, 345, 406, 609, 660, 736, 767, 957, 1067, 1207, 1242, 1768, 1786, 1817, 1824, 2047, 2288, 2407, 2672, 2686, 2714, 3009, 4012, 4387, 4653, 4847, 6179, 7532, 8366, 8920, 10005, 10528, 11140, 11670, 11951
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

A015883 Numbers k such that sigma(k) = sigma(k+13).

Original entry on oeis.org

182, 782, 1965, 2486, 2678, 2685, 12141, 12441, 17342, 21242, 27686, 34905, 35505, 35853, 38662, 38985, 56732, 63578, 104342, 109461, 192933, 198909, 222122, 236966, 245349, 251654, 256322, 261885, 262238, 324441, 333909
Offset: 1

Views

Author

Keywords

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 182, p. 56, Ellipses, Paris 2008.

Crossrefs

Programs

Extensions

Corrected by T. D. Noe, Oct 31 2006

A181647 Numbers m having the same sum of divisors as m+20 has.

Original entry on oeis.org

42, 51, 123, 141, 204, 371, 497, 708, 923, 992, 1034, 1343, 1391, 1484, 1595, 1691, 1826, 3266, 3317, 5015, 5152, 7367, 8003, 9132, 9287, 9494, 11078, 13223, 15458, 15833, 17975, 18752, 19428, 20120, 20915, 21251, 21566, 24119, 24503, 25787, 28000, 29726, 29795
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 03 2010

Keywords

Examples

			a(1) = 42, divisors(42) = {1,2,3,6,7,14,21,42}, divisors(42+20) = {1,2,31,62}: 1+2+3+6+7+14+21+42 = 1+2+31+62.
		

References

  • Jean-Marie De Koninck, Those Fascinating Numbers, Amer. Math. Soc., 2009, page 16.

Crossrefs

Programs

  • Mathematica
    Select[Range[30000], Equal @@ DivisorSigma[1, # + {0, 20}] &] (* Amiram Eldar, Apr 16 2025 *)
  • PARI
    isok(n) = sigma(n) == sigma(n+20); \\ Michel Marcus, Feb 06 2016

Formula

A000203(a(n)) = A000203(a(n) + 20).

A055574 n satisfying sigma(n+1) = sigma(n-1).

Original entry on oeis.org

34, 55, 285, 367, 835, 849, 919, 1241, 1505, 2911, 2914, 3305, 4149, 4188, 6111, 6903, 7170, 7913, 9360, 10251, 10541, 12566, 15086, 17273, 17815, 19005, 19689, 21411, 21462, 24882, 25020, 26610, 28125, 30593, 30789, 31485, 38211, 38983
Offset: 1

Views

Author

Joseph L. Pe, Feb 12 2002

Keywords

Comments

Essentially the same as A007373: a(n) = A007373(n) + 1.
Numbers n such that antisigma(n+1) - antisigma(n-1) = 2*n + 1, where antisigma(m) = A024816(m) = sum of nondivisors of m. - Jaroslav Krizek, Mar 17 2013

Examples

			sigma(34-1) = 48 = sigma(34+1), so 34 is a term of the sequence.
		

Crossrefs

Cf. A007373.

Programs

  • Mathematica
    Select[Range[10^5], DivisorSigma[1, # + 1] == DivisorSigma[1, # - 1] &]
  • PARI
    is(n)=sigma(n+1)==sigma(n-1) \\ Charles R Greathouse IV, Mar 09 2014
    
  • PARI
    x=y=1; forfactored(z=3,10^6, if(sigma(z)==sigma(x), print1(y[1]", ")); x=y; y=z) \\ Charles R Greathouse IV, May 09 2017

A229254 Numbers k such that k and k+2 have the same number (A000005) and sum of divisors (A000203).

Original entry on oeis.org

33, 54, 918, 1240, 3304, 4148, 4187, 7169, 12565, 15085, 19688, 24881, 25019, 26609, 38982, 51835, 53963, 59987, 76360, 77057, 96728, 143369, 150419, 167560, 170561, 205727, 215069, 220817, 278920, 418307, 564857, 731320, 785270, 907254, 910315, 986153
Offset: 1

Views

Author

Jaroslav Krizek, Sep 20 2013

Keywords

Comments

Also numbers k such that A229335(k) = A229335(k+2).
Intersection of A007373 and A062832.

Examples

			Divisors of 54 = {1, 2, 3, 6, 9, 18, 27, 54}, divisors of 56 = {1, 2, 4, 7, 8, 14, 28, 56}, both have 8 divisors and sum = 120.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10000], DivisorSigma[0, #] == DivisorSigma[0, # + 2] && DivisorSigma[1, #] == DivisorSigma[1, # + 2] &]
  • PARI
    isok(n) = (numdiv(n) == numdiv(n+2)) && (sigma(n) == sigma(n+2)); \\ Michel Marcus, Sep 20 2013

Extensions

More terms from Michel Marcus, Sep 20 2013

A169635 Integers m such that sigma_2(m) = sigma_2(m + 2) where sigma_2(m) is the sum of squares of divisors of m (A001157).

Original entry on oeis.org

24, 215, 280, 1079, 947519, 1362239, 2230271, 14939999, 19720007, 32509439, 45581759, 45841247, 49436927, 78436511, 82842911, 101014631, 166828031, 225622151, 225757799, 250999559, 377129087, 554998751, 619606439, 846765431, 1204092287, 1302170687, 1710035711
Offset: 1

Views

Author

Michel Lagneau, Apr 04 2010

Keywords

Comments

The equation sigma_2(m) = sigma_2(m + k) has infinitely many solutions where k >= 2 and k is even (J.-M. De Koninck).
From Amiram Eldar, Apr 19 2024: (Start)
De Koninck's proof is based on the assumption of Schinzel's hypothesis H. If q, r = q + 2, s = q^2 + q + 1, and p = q^2 + 3*q + 3 are all primes, then p*q is a term (the values of q+1 are the terms of A268043).
The equation sigma_2(m) = sigma_2(m + 1) has only one solution: m = 6. (End)

Examples

			For m=24, sigma_2(24) = sigma_2(26) = 850.
		

References

  • Jean-Marie De Koninck, Those Fascinating Numbers, American Mathematical Society, 2009, p. 118, entry 1079.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B13, pp. 103-104.

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 500000000 do:liste:= divisors(n) : s2 :=sum(liste[i]^2, i=1..nops(liste)):liste:=divisors(n+2):s3:=sum(liste[i]^2, i=1..nops(liste)):if s2 = s3 then print(n):else fi:od:
  • Mathematica
    Select[Range[10^9], DivisorSigma[2,#] == DivisorSigma[2,#+2]&]
  • PARI
    is(n) = sigma(n, 2) == sigma(n + 2, 2); \\ Amiram Eldar, Apr 19 2024
    
  • PARI
    lista(mmax) = {my(s1 = sigma(1, 2), s2 = sigma(2, 2), s3, s4); forstep(m = 3, mmax, 2, s3 = sigma(m, 2); s4 = sigma(m+1, 2); if(s1 == s3, print1(m - 2, ", ")); if(s2 == s4, print1(m - 1, ", ")); s1 = s3; s2 = s4);} \\ Amiram Eldar, Apr 19 2024

Extensions

a(25)-a(27) from Donovan Johnson, Apr 14 2013

A330703 Numbers k such that psi(k) = psi(k + 2) where psi(k) is the Dedekind psi function (A001615).

Original entry on oeis.org

6, 9, 12, 14, 18, 20, 33, 44, 62, 70, 92, 108, 116, 138, 164, 175, 212, 254, 280, 308, 320, 332, 348, 356, 452, 490, 524, 558, 572, 692, 716, 764, 833, 932, 956, 1004, 1105, 1124, 1172, 1188, 1436, 1496, 1562, 1593, 1676, 1724, 1772, 1964, 2002, 2036, 2088, 2132
Offset: 1

Views

Author

Amiram Eldar, Dec 26 2019

Keywords

Examples

			6 is in the sequence since psi(6) = psi(8) = 12.
		

Crossrefs

Programs

  • Mathematica
    psi[1] = 1; psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); Select[Range[10^3], psi[#] == psi[# + 2] &]

A283552 Numbers k == 33 (mod 60) such that 2k+1, 2k+5, 3k+2 and 3k+8 are all primes.

Original entry on oeis.org

33, 153, 453, 1953, 4773, 19353, 23253, 36273, 37413, 38793, 40773, 50133, 51693, 70413, 70833, 83433, 88893, 108393, 115233, 117873, 131193, 136113, 157773, 161733, 164793, 170973, 184533, 221793, 234813, 238293, 258453, 271893, 272313, 287313, 304953, 307713, 325533, 327753, 330393
Offset: 1

Views

Author

Amiram Eldar, Mar 10 2017

Keywords

Comments

Andreas Weingartner used the first 913685 terms of this sequence to prove that the equation sigma(x) = sigma(x+k) has at least one solution for every even k in the range 2 <= k <= 10^(10^7). The upper bound is just lower than the product of 2a(n)+1 of these terms which equals 3.222... * 10^10000007.

Examples

			a(2) = 153, 2*153 + 1 = 307, 2*153 + 5 = 311, 3*153 + 2 = 461 and 3*153 + 8 = 467 are all primes.
		

Crossrefs

Programs

  • Mathematica
    Select[33 + Range[0, 6*10^5]*60, PrimeQ[2 # + 1] && PrimeQ[2 # + 5] && PrimeQ[3 # + 2] && PrimeQ[3 # + 8] &]

A321023 Numbers k such that sigma(k) = sigma(k + 15).

Original entry on oeis.org

26, 62, 20840574, 25741470, 60765690, 102435795, 277471467, 361466454, 464465910, 1110512403, 1927430490, 2741174163, 3631266639, 3844534602, 3982743750, 4565968407, 4612184562, 4829319495, 4981969978, 7066794735, 13484870399, 14268004443, 14550390855, 15051147111
Offset: 1

Views

Author

Tomohiro Yamada, Oct 26 2018

Keywords

Examples

			sigma(26) = sigma(41) = 42, sigma(62) = sigma(77) = 96.
		

Crossrefs

Programs

  • PARI
    my(V=vector(15)); for(n=1, 2^28, my(s=sigma(n), r=(n%15)+1); if (s==V[r], print1(n-15, ", ")); V[r]=s)

Extensions

a(7)-a(9) from Amiram Eldar, Oct 26 2018
a(10)-a(24) from Giovanni Resta, Oct 26 2018
Previous Showing 11-19 of 19 results.