cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A010148 Continued fraction for sqrt(69).

Original entry on oeis.org

8, 3, 3, 1, 4, 1, 3, 3, 16, 3, 3, 1, 4, 1, 3, 3, 16, 3, 3, 1, 4, 1, 3, 3, 16, 3, 3, 1, 4, 1, 3, 3, 16, 3, 3, 1, 4, 1, 3, 3, 16, 3, 3, 1, 4, 1, 3, 3, 16, 3, 3, 1, 4, 1, 3, 3, 16, 3, 3, 1, 4, 1, 3, 3, 16, 3, 3, 1, 4, 1, 3, 3, 16, 3, 3, 1, 4, 1
Offset: 0

Views

Author

Keywords

Examples

			8.306623862918074852584262744... = 8 + 1/(3 + 1/(3 + 1/(1 + 1/(4 + ...)))). - _Harry J. Smith_, Jun 08 2009
		

Crossrefs

Cf. A010521 Decimal expansion. - Harry J. Smith, Jun 08 2009

Programs

  • Mathematica
    ContinuedFraction[Sqrt[69],300] (* Vladimir Joseph Stephan Orlovsky, Mar 08 2011 *)
    PadRight[{8},120,{16,3,3,1,4,1,3,3}] (* Harvey P. Dale, Jan 25 2024 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 22000); x=contfrac(sqrt(69)); for (n=0, 20000, write("b010148.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 08 2009

A076157 Continued fraction expansion for c=sum_{k>=0} 1/2^(k!).

Original entry on oeis.org

1, 3, 1, 3, 4, 4095, 1, 3, 3, 1, 3, 4722366482869645213695, 1, 2, 1, 3, 3, 1, 4095, 4, 3, 1, 3, 3121748550315992231381597229793166305748598142664971150859156959625371738819765620120306103063491971159826931121406622895447975679288285306290175
Offset: 1

Views

Author

Benoit Cloitre, Nov 02 2002

Keywords

Comments

Observation: if b(k) denotes the sequence of all elements of the continued fraction for c, b(k) = 4095 if k==6 or 19 (mod 24); b(k) = 4722366482869645213695 if k==12 or 37 (mod 48); .... If b(k) is not congruent to 5 (mod 10), it seems that b(k) = 1,2,3 or 4 only.
Conjecture: a(3*2^n) = -1 + 2^[(n+1)((n+2)!) ]. - Ralf Stephan, May 17 2005
The conjecture follows from the theorem in Shallit's paper. The continued fraction has a "folded" overall structure. - Georg Fischer, Aug 29 2022

Crossrefs

Programs

  • PARI
    {allocatemem(220000000);
    default(realprecision, 1000000);
    contfrac(suminf(k=0, 1/(2^(k!))))}

Formula

c=1.2656250596046447753906250000000000007... = A076187.

Extensions

More terms from Ralf Stephan, May 17 2005
b-file, a-file, PARI program, and corrected conjecture by Rick L. Shepherd, Jun 07 2013

A010136 Continued fraction for sqrt(46).

Original entry on oeis.org

6, 1, 3, 1, 1, 2, 6, 2, 1, 1, 3, 1, 12, 1, 3, 1, 1, 2, 6, 2, 1, 1, 3, 1, 12, 1, 3, 1, 1, 2, 6, 2, 1, 1, 3, 1, 12, 1, 3, 1, 1, 2, 6, 2, 1, 1, 3, 1, 12, 1, 3, 1, 1, 2, 6, 2, 1, 1, 3, 1, 12, 1, 3, 1, 1, 2, 6, 2, 1, 1, 3, 1, 12, 1, 3, 1, 1, 2
Offset: 0

Views

Author

Keywords

Examples

			6.782329983125268139064556326... = 6 + 1/(1 + 1/(3 + 1/(1 + 1/(1 + ...)))). - _Harry J. Smith_, Jun 06 2009
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.

Crossrefs

Cf. A010500 (decimal expansion), A041078/A041079 (convergents), A248272 (Egyptian fractions).
Cf. A190567.

Programs

  • Mathematica
    ContinuedFraction[Sqrt[46],300] (* Vladimir Joseph Stephan Orlovsky, Mar 07 2011 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 16000); x=contfrac(sqrt(46)); for (n=0, 20000, write("b010136.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 06 2009

A041078 Numerators of continued fraction convergents to sqrt(46).

Original entry on oeis.org

6, 7, 27, 34, 61, 156, 997, 2150, 3147, 5297, 19038, 24335, 311058, 335393, 1317237, 1652630, 2969867, 7592364, 48524051, 104640466, 153164517, 257804983, 926579466, 1184384449, 15139192854, 16323577303
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = 48670*a(n-12)-a(n-24). G.f.: -(x^23 -6*x^22 +7*x^21 -27*x^20 +34*x^19 -61*x^18 +156*x^17 -997*x^16 +2150*x^15 -3147*x^14 +5297*x^13 -19038*x^12 -24335*x^11 -19038*x^10 -5297*x^9 -3147*x^8 -2150*x^7 -997*x^6 -156*x^5 -61*x^4 -34*x^3 -27*x^2 -7*x-6) / (x^24-48670*x^12+1). - Colin Barker, Jul 19 2012

Extensions

Formula corrected by Colin Barker, Jul 24 2012

A041079 Denominators of continued fraction convergents to sqrt(46).

Original entry on oeis.org

1, 1, 4, 5, 9, 23, 147, 317, 464, 781, 2807, 3588, 45863, 49451, 194216, 243667, 437883, 1119433, 7154481, 15428395, 22582876, 38011271, 136616689, 174627960, 2232152209, 2406780169, 9452492716, 11859272885
Offset: 0

Views

Author

Keywords

Comments

46 is the smallest value of n for which the period of the continued fraction convergents to sqrt(n) is 12. [Colin Barker, Jul 19 2012]

Crossrefs

Programs

Formula

a(n) = 48670*a(n-12)-a(n-24). G.f.: -(x^22 -x^21 +4*x^20 -5*x^19 +9*x^18 -23*x^17 +147*x^16 -317*x^15 +464*x^14 -781*x^13 +2807*x^12 -3588*x^11 -2807*x^10 -781*x^9 -464*x^8 -317*x^7 -147*x^6 -23*x^5 -9*x^4 -5*x^3 -4*x^2 -x -1) / (x^24-48670*x^12+1). [Colin Barker, Jul 19 2012]

Extensions

Formula corrected by Colin Barker, Jul 24 2012

A073414 Numerator of the n-th convergent to Sum_{k>=0} 1/2^(2^k).

Original entry on oeis.org

0, 1, 4, 9, 40, 169, 1054, 4385, 9824, 43681, 271910, 587501, 2621914, 16318985, 67897854, 287910401, 643718656, 2862785025, 17820428806, 38503642637, 171834999354, 725843640053, 4526896839672, 18833430998741, 42193758837154
Offset: 1

Views

Author

Benoit Cloitre, Aug 23 2002

Keywords

Crossrefs

Programs

  • Maple
    a007400:= proc(n) option remember; local n8, n16;
        n8:= n mod 8;
        if n8 = 0 or n8 = 3 then return 2
        elif n8 = 4 or n8 = 7 then return 4
        elif n8 = 1 then return procname((n+1)/2)
        elif n8 = 2 then return procname((n+2)/2)
        fi;
        n16:= n mod 16;
        if n16 = 5 or n16 = 14 then return 4
        elif n16 = 6 or n16 = 13 then return 6
        fi
    end proc:
    a007400(0):= 0: a007400(1):= 1: a007400(2):= 4:
    A[1]:= 0: A[2]:= 1:
    for n from 3 to 100 do
      A[n]:= A[n-1]*a007400(n-1)+A[n-2];
    od:
    seq(A[n],n=1..100); # Robert Israel, Jun 14 2016
  • Mathematica
    (* b is a007400 *)
    b[n_] := b[n] = Module[{n8, n16}, n8 = Mod[n, 8]; Which[n8 == 0 || n8 == 3, Return[2], n8 == 4 || n8 == 7, Return[4], n8 == 1, Return[b[(n+1)/2]], n8 == 2, Return[b[(n+2)/2]]]; n16 = Mod[n, 16]; Which[n16 == 5 || n16 == 14, Return[4], n16 == 6 || n16 == 13, Return[6]]];
    b[0] = 0; b[1] = 1; b[2] = 4;
    a[1] = 0; a[2] = 1;
    a[n_] := a[n] = a[n-1] b[n-1] + a[n-2];
    Array[a, 100] (* Jean-François Alcover, Jun 10 2020, after Robert Israel *)
  • PARI
    a(n)=component(component(contfracpnqn(contfrac(sum(k=0,20,1/2^(2^k)),n)),1),1)

Formula

a(n) = a(n-1) A007400(n-1) + a(n-2). - Robert Israel, Jun 14 2016

A073415 Denominator of the n-th convergent to Sum_{k>=0} 1/2^(2^k).

Original entry on oeis.org

1, 1, 5, 11, 49, 207, 1291, 5371, 12033, 53503, 333051, 719605, 3211471, 19988431, 83165195, 352649211, 788463617, 3506503679, 21827485691, 47161475061, 210473385935, 889055018801, 5544803498741, 23068269013765, 51681341526271
Offset: 1

Views

Author

Benoit Cloitre, Aug 23 2002

Keywords

Crossrefs

Programs

  • Maple
    a007400:= proc(n) option remember; local n8, n16;
        n8:= n mod 8;
        if n8 = 0 or n8 = 3 then return 2
        elif n8 = 4 or n8 = 7 then return 4
        elif n8 = 1 then return procname((n+1)/2)
        elif n8 = 2 then return procname((n+2)/2)
        fi;
        n16:= n mod 16;
        if n16 = 5 or n16 = 14 then return 4
        elif n16 = 6 or n16 = 13 then return 6
        fi
    end proc:
    a007400(0):= 0: a007400(1):= 1: a007400(2):= 4:
    A[1]:= 1: A[2]:= 1:
    for n from 3 to 100 do
      A[n]:= A[n-1]*a007400(n-1)+A[n-2];
    od:
    seq(A[n], n=1..100); # Robert Israel, Jun 14 2016
  • Mathematica
    (* b is a007400 *)
    b[n_] := b[n] = Module[{n8, n16}, n8 = Mod[n, 8]; Which[n8 == 0 || n8 == 3, Return[2], n8 == 4 || n8 == 7, Return[4], n8 == 1, Return[b[(n+1)/2]], n8 == 2, Return[b[(n+2)/2]]]; n16 = Mod[n, 16]; Which[n16 == 5 || n16 == 14, Return[4], n16 == 6 || n16 == 13, Return[6]]];
    b[0] = 0; b[1] = 1; b[2] = 4;
    a[1] = a[2] = 1;
    a[n_] := a[n] = a[n-1] b[n-1] + a[n-2];
    Array[a, 100] (* Jean-François Alcover, Jun 10 2020, after Robert Israel *)
  • PARI
    a(n)=component(component(contfracpnqn(contfrac(sum(k=0,20,1/2^(2^k)),n)),1),2)

Formula

a(n) = a(n-1) A007400(n) + a(n-2). - Robert Israel, Jun 14 2016

A092910 a(n) is the (3n+2)-th component of the continued fraction for sum(k>=0,2^(-k!)).

Original entry on oeis.org

3, 4, 3, 3, 2, 3, 4, 3, 2, 4, 3, 2, 3, 3, 4, 3, 2, 4, 3, 3, 2, 3, 4, 2, 3, 4, 3, 2, 3, 3, 4, 3, 2, 4, 3, 3, 2, 3, 4, 3, 2, 4, 3, 2, 3, 3, 4, 2, 3, 4, 3, 3, 2, 3, 4, 2, 3, 4, 3, 2, 3, 3, 4, 3, 2, 4, 3, 3, 2, 3, 4, 3, 2, 4, 3, 2, 3, 3, 4, 3, 2, 4, 3, 3, 2, 3, 4, 2, 3, 4, 3, 2, 3, 3, 4, 2, 3, 4, 3, 3, 2, 3, 4, 3, 2
Offset: 0

Views

Author

Benoit Cloitre, Apr 16 2004

Keywords

Crossrefs

Programs

  • PARI
    a(n)=5-component(contfrac(sum(i=0,10,1/2^(2^i))),n+3)/2
    
  • Scheme
    (define (A092910 n) (- 5 (* 1/2 (A007400 (+ 2 n))))) ;;  Code for A007400 given under that entry. - Antti Karttunen, Aug 12 2017

Formula

a(n) = 5 - (A007400(n+2)/2).

A081846 Maximal element in the continued fraction for 1/n*sum(k>=0,1/2^(2^k)).

Original entry on oeis.org

6, 12, 19, 25, 33, 39, 46, 52, 60, 66, 72, 79, 85, 93, 99, 106, 112, 120, 126, 132, 139, 145, 153, 159, 166, 172, 180, 186, 192, 199, 205, 206, 219, 226, 232, 240, 246, 252, 259, 265, 273, 279, 286, 292, 300, 306, 313, 319, 326, 333, 339, 346, 352, 360, 366, 373, 379, 386, 393, 399, 406, 412, 420, 413, 433, 439, 446, 453, 459, 466, 472, 480, 486, 493, 499, 506, 513, 519, 526, 532, 540, 546, 553, 559, 567, 573, 579, 586, 593, 600, 606, 613, 619, 627, 633, 619, 646, 653, 660, 666
Offset: 1

Views

Author

Benoit Cloitre, Apr 10 2003

Keywords

Comments

It seems that a(n)=20n/3 for infinitely many values of n.

Crossrefs

Cf. A007400, A007404, A078816 (erroneous version).
Cf. A384939.

Programs

  • Mathematica
    s = N[Sum[1/2^(2^k), {k, 0, Infinity}], 1000000]; Table[Max[ContinuedFraction[s/n]], {n, 1, 100}] (* Vaclav Kotesovec, Jul 22 2025 *)

Extensions

Corrected and extended by Vaclav Kotesovec, Jul 22 2025

A089267 Continued fraction expansion with iterated 3-fold symmetry.

Original entry on oeis.org

0, 1, 1, 23, 1, 2, 1, 18815, 3, 1, 23, 3, 1, 23, 1, 2, 1, 106597754640383, 3, 1, 23, 1, 3, 23, 1, 3, 18815, 1, 2, 1, 23, 3, 1, 23, 1, 2, 1, 18815, 3, 1, 23, 3, 1, 23, 1, 2, 1, 1715738475058821295603924428015888899408203312889855, 3, 1
Offset: 1

Views

Author

Ralf Stephan, Oct 30 2003

Keywords

Crossrefs

Cf. A007400.

Programs

  • Mathematica
    nmax = 50; f[m_] := ContinuedFraction[ Sum[ 1/ChebyshevT[4^k, 2], {k, 0, m}]]; A089267 = Catch[ For[m = 1, True, m++, If[ Length[fm = f[m]] > nmax, Throw[ fm[[1 ;; nmax]] ]]]] (* Jean-François Alcover, Sep 19 2012 *)
  • PARI
    contfrac(suminf(k=0,1/subst(poltchebi(4^k),x,2)))
    
  • PARI
    contfrac(suminf(k=0,1/polchebyshev(4^k,1,2))) \\ Charles R Greathouse IV, May 28 2015

Formula

Sum_{k=0..infinity} 1/chebyshev(4^k, 2) = 0.51030927976262776140...
Previous Showing 11-20 of 28 results. Next