cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 61 results. Next

A263827 The number c_{Cc pi_1(B_1)}(2n) of the second amphicosm 2n-coverings over the first amphicosm.

Original entry on oeis.org

2, 6, 10, 14, 14, 30, 18, 30, 36, 42, 26, 70, 30, 54, 70, 62, 38, 108, 42, 98, 90, 78, 50, 150, 76, 90, 116, 126, 62, 210, 66, 126, 130, 114, 126, 252, 78, 126, 150, 210, 86, 270, 90, 182, 252, 150, 98, 310, 132, 228, 190, 210, 110, 348, 182, 270, 210, 186, 122, 490, 126, 198, 324, 254, 210, 390, 138, 266, 250, 378
Offset: 1

Views

Author

N. J. A. Sloane, Oct 28 2015

Keywords

Crossrefs

Programs

  • Maple
    A263827 := proc(n)
        local locn,a,twol,fourl ;
        locn := 2*n ;
        # Theorem 3 (iii)
        a := 0 ;
        for twol in numtheory[divisors](locn) do
            if type(twol,'even') then
                a := a+numtheory[sigma](locn/twol) ;
            end if;
        end do:
        for fourl in numtheory[divisors](locn) do
            if modp(fourl,4) = 0 then
                a := a-numtheory[sigma](locn/fourl) ;
            end if;
        end do:
        %*2 ;
    end proc: # R. J. Mathar, Nov 03 2015
  • Mathematica
    a[n_] := 2*Sum[If[Mod[d,4] == 2, DivisorSigma[1, 2*n/d], 0], {d, Divisors[ 2*n ] } ];
    Array[a, 70] (* Jean-François Alcover, Dec 03 2017 *)
  • PARI
    A007429(n) = sumdiv(n, d, sigma(d));
    a(n) = 2*A007429(n) - if(n%2, 0, 2*A007429(n\2));
    vector(70, n, a(n))  \\ Gheorghe Coserea, May 04 2016

A263829 Total number c_{pi_1(B_2)}(n) of n-coverings over the second amphicosm.

Original entry on oeis.org

1, 3, 5, 13, 7, 19, 9, 43, 18, 33, 13, 93, 15, 51, 35, 137, 19, 110, 21, 175, 45, 99, 25, 355, 38, 129, 58, 285, 31, 289, 33, 455, 65, 201, 63, 626, 39, 243, 75, 721, 43, 483, 45, 589, 126, 339, 49, 1305, 66, 498, 95, 783, 55, 750, 91, 1227
Offset: 1

Views

Author

N. J. A. Sloane, Oct 28 2015

Keywords

Crossrefs

Programs

  • PARI
    A001001(n) = sumdiv(n, d, sigma(d) * d);
    A007429(n) = sumdiv(n, d, sigma(d));
    A007434(n) = sumdiv(n, d, moebius(n\d) * d^2);
    A059376(n) = sumdiv(n, d, moebius(n\d) * d^3);
    A060640(n) = sumdiv(n, d, sigma(n\d) * d);
    EpiPcZn(n) = sumdiv(n, d, moebius(n\d) * d^2 * gcd(d,2));
    S1(n)      = if (n%2, 0, A001001(n\2));
    S11(n)     = A060640(n) - if(n%2, 0, A060640(n\2));
    S21(n)     = if (n%2, 0, 2*A060640(n\2)) - if (n%4, 0, 2*A060640(n\4));
    S22(n)     = { if (n%2, A060640(n), if (n%4, 0,
      sumdiv(n\4, d, 2*d*(sigma(n\(2*d)) - sigma(n\(4*d))))));
    };
    A027844(n) = S1(n) + S11(n) + S21(n);
    a(n) = { 1/n * sumdiv(n, d,
      A059376(d) * S1(n\d) + EpiPcZn(d) * S21(n\d) + A007434(d) * S22(n\d));
    };
    vector(56, n, a(n))  \\ Gheorghe Coserea, May 04 2016

Extensions

More terms from Gheorghe Coserea, May 04 2016

A280085 Partial sums of A206032 (Product_{d|n} sigma(d)).

Original entry on oeis.org

1, 4, 8, 29, 35, 179, 187, 502, 554, 878, 890, 29114, 29128, 29704, 30280, 40045, 40063, 113071, 113091, 208347, 209371, 210667, 210691, 25612291, 25612477, 25614241, 25616321, 25842113, 25842143, 52715999, 52716031, 53331226, 53333530, 53336446, 53338750
Offset: 1

Views

Author

Jaroslav Krizek, Dec 26 2016

Keywords

Comments

sigma(n) is the sum of the divisors of n (A000203).

Crossrefs

Cf. A000203, A007429, A206032, A280077 (partial sums of A007429), A280086 (partial products of A206032).

Programs

  • Magma
    [&+[&*[SumOfDivisors(d): d in Divisors(k)]: k in [1..n]]: n in [1..100]]
  • Mathematica
    Accumulate@ Array[Product[DivisorSigma[1, d], {d, Divisors@ #}] &, 35] (* Michael De Vlieger, Dec 26 2016 *)

Formula

a(n) = Sum_{i=1..n} A206032(i).

A280086 Partial products of A206032 (Product_{d|n} sigma(d)).

Original entry on oeis.org

1, 3, 12, 252, 1512, 217728, 1741824, 548674560, 28531077120, 9244068986880, 110928827842560, 3130855237028413440, 43831973318397788160, 25247216631397125980160, 14542396779684744564572160, 142006504553621530673047142400, 2556117081965187552114848563200
Offset: 1

Views

Author

Jaroslav Krizek, Dec 26 2016

Keywords

Comments

sigma(n) is the sum of the divisors of n (A000203).

Crossrefs

Cf. A000203, A007429, A206032, A280078 (partial products of A007429), A280085 (partial sums of A206032).

Programs

  • Magma
    [&*[&*[SumOfDivisors(d): d in Divisors(k)]: k in [1..n]]: n in [1..100]]
  • Mathematica
    FoldList[Times[#1, #2] &, Array[Product[DivisorSigma[1, d], {d, Divisors@ #}] &, 17]] (* Michael De Vlieger, Dec 26 2016 *)

Formula

a(n) = Product_{i=1..n} A206032(i).

A290478 Triangle read by rows in which row n lists the sum of the divisors of each divisor of n.

Original entry on oeis.org

1, 1, 3, 1, 4, 1, 3, 7, 1, 6, 1, 3, 4, 12, 1, 8, 1, 3, 7, 15, 1, 4, 13, 1, 3, 6, 18, 1, 12, 1, 3, 4, 7, 12, 28, 1, 14, 1, 3, 8, 24, 1, 4, 6, 24, 1, 3, 7, 15, 31, 1, 18, 1, 3, 4, 12, 13, 39, 1, 20, 1, 3, 7, 6, 18, 42, 1, 4, 8, 32, 1, 3, 12, 36, 1, 24, 1, 3, 4, 7
Offset: 1

Views

Author

Michel Lagneau, Aug 03 2017

Keywords

Comments

Or, in the triangle A027750(n), replace each element with the sum of its divisors.
The row whose index x is a prime power p^m (p prime and m >= 0) is equal to (1, sigma(p), sigma(p^2), ..., sigma(p^(m-1))).
We observe the following properties of row n when n is the product of k distinct primes, k = 1,2,...:
when n = prime(m), row n = (1, prime(m)+1);
when n is the product of two distinct primes p < q, row n = (1, p+1, q+1,(p+1)(q+1));
when n is the product of three distinct primes p < q < r, row n = (1, p+1, q+1, r+1, (p+1)(q+1), (p+1)(r+1), (q+1)(r+1), sigma(p*q*r));

Examples

			Row 6 is (a(11), a(12), a(13), a(14)) = (1, 3, 4, 12) because sigma(A027750(11))= sigma(1) = 1, sigma(A027750(12))= sigma(2) = 3, sigma(A027750(13))= sigma(3) = 4 and sigma(A027750(14)) = sigma(6) = 12.
Triangle begins:
  1;
  1,  3;
  1,  4;
  1,  3,  7;
  1,  6;
  1,  3,  4, 12;
  1,  8;
  1,  3,  7, 15;
  1,  4, 13;
  1,  3,  6, 18;
  ...
		

Crossrefs

Cf. A007429 (row sums), A206032 (row products).

Programs

  • Magma
    [[SumOfDivisors(d): d in Divisors(n)]: n in [1..20]]; // Vincenzo Librandi, Sep 08 2017
  • Maple
    with(numtheory):nn:=100:
    for n from 1 to nn do:
      d1:=divisors(n):n1:=nops(d1):
       for i from 1 to n1 do:
         s:=sigma(d1[i]):
         printf(`%d, `,s):
       od:
    od:
  • Mathematica
    Array[DivisorSigma[1, Divisors@ #] &, 24] // Flatten (* Michael De Vlieger, Aug 07 2017 *)
  • PARI
    row(n) = apply(sigma, divisors(n)); \\ Michel Marcus, Dec 27 2021
    

Formula

a(n) = sigma(A027750(n)).

A318845 a(n) = Sum_{d|n} (-1)^(n/d+1) * Sum_{j|d} sigma(j), where sigma(j) = sum of divisors of j (A000203).

Original entry on oeis.org

1, 3, 6, 6, 8, 18, 10, 10, 24, 24, 14, 36, 16, 30, 48, 15, 20, 72, 22, 48, 60, 42, 26, 60, 46, 48, 82, 60, 32, 144, 34, 21, 84, 60, 80, 144, 40, 66, 96, 80, 44, 180, 46, 84, 192, 78, 50, 90, 76, 138, 120, 96, 56, 246, 112, 100, 132, 96, 62, 288, 64, 102, 240, 28, 128, 252, 70, 120, 156, 240
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 04 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(n/d + 1) Sum[DivisorSigma[1, j], {j, Divisors[d]}], {d, Divisors[n]}], {n, 70}]
    nmax = 70; Rest[CoefficientList[Series[Sum[DivisorSum[k, DivisorSigma[1, #] &] x^k/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    nmax = 70; Rest[CoefficientList[Series[Log[Product[(1 + x^k)^(DivisorSum[k, DivisorSigma[1, #] &]/k), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]]
    f[p_, e_] := (2*p^(e+3) - (e^2+5*e+6)*p^2 + (2*e^2+8*e+6)*p - e^2 - 3*e -2)/(2*(p-1)^3); f[2, e_] := (e+1)*(e+2)/2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 26 2025 *)
  • PARI
    a(n) = {my(f = factor(n), p , e); prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; if(p == 2, (e+1)*(e+2)/2, (2*p^(e+3) - (e^2+5*e+6)*p^2 + (2*e^2+8*e+6)*p - e^2 - 3*e -2)/(2*(p-1)^3)));} \\ Amiram Eldar, May 26 2025

Formula

G.f.: Sum_{k>=1} A007429(k)*x^k/(1 + x^k).
L.g.f.: log(Product_{k>=1} (1 + x^k)^(A007429(k)/k)) = Sum_{n>=1} a(n)*x^n/n.
From Amiram Eldar, May 26 2025: (Start)
Multiplicative with a(2^e) = (e+1)*(e+2)/2, and a(p^e) = (2*p^(e+3) - (e^2+5*e+6)*p^2 + (2*e^2+8*e+6)*p - e^2 - 3*e -2)/(2*(p-1)^3) for an odd prime p.
Dirichlet g.f: zeta(s-1) * zeta(s)^2 * (1 - 1/2^(s-1)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^6/864 = 1.112718... . (End)

A327096 Expansion of Sum_{k>=1} sigma(k) * x^k / (1 - x^(2*k)), where sigma = A000203.

Original entry on oeis.org

1, 3, 5, 7, 7, 15, 9, 15, 18, 21, 13, 35, 15, 27, 35, 31, 19, 54, 21, 49, 45, 39, 25, 75, 38, 45, 58, 63, 31, 105, 33, 63, 65, 57, 63, 126, 39, 63, 75, 105, 43, 135, 45, 91, 126, 75, 49, 155, 66, 114, 95, 105, 55, 174, 91, 135, 105, 93, 61, 245, 63, 99
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 13 2019

Keywords

Comments

Inverse Moebius transform of A002131.
Dirichlet convolution of A000027 with A001227.

Crossrefs

Programs

  • Mathematica
    nmax = 62; CoefficientList[Series[Sum[DivisorSigma[1, k] x^k/(1 - x^(2 k)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    a[n_] := Sum[Total[Select[Divisors[d], OddQ[d/#] &]], {d, Divisors[n]}]; Table[a[n], {n, 1, 62}]
  • PARI
    a(n)={sumdiv(n, d, if(n/d%2, sigma(d)))} \\ Andrew Howroyd, Sep 13 2019

Formula

G.f.: Sum_{k>=1} A002131(k) * x^k / (1 - x^k).
G.f.: Sum_{k>=1} A001227(k) * x^k / (1 - x^k)^2.
a(n) = Sum_{d|n} A002131(d).
a(n) = Sum_{d|n} d * A001227(n/d).
a(n) = (A007429(n) + A288417(n)) / 2.
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^4/96 = 1.01467803... (A300707). - Amiram Eldar, Oct 23 2022

A343442 If n = Product (p_j^k_j) then a(n) = Product (p_j + 2), with a(1) = 1.

Original entry on oeis.org

1, 4, 5, 4, 7, 20, 9, 4, 5, 28, 13, 20, 15, 36, 35, 4, 19, 20, 21, 28, 45, 52, 25, 20, 7, 60, 5, 36, 31, 140, 33, 4, 65, 76, 63, 20, 39, 84, 75, 28, 43, 180, 45, 52, 35, 100, 49, 20, 9, 28, 95, 60, 55, 20, 91, 36, 105, 124, 61, 140, 63, 132, 45, 4, 105, 260, 69, 76, 125, 252
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 15 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := Times @@ ((#[[1]] + 2) & /@ FactorInteger[n]); Table[a[n], {n, 70}]
    nmax = 70; CoefficientList[Series[Sum[MoebiusMu[k]^2 DivisorSigma[1, k] x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, moebius(d)^2 * sigma(d)) \\ Andrew Howroyd, Apr 15 2021

Formula

G.f.: Sum_{k>=1} mu(k)^2 * sigma(k) * x^k / (1 - x^k), where mu = A008683 and sigma = A000203.
a(n) = Sum_{d|n} mu(d)^2 * sigma(d).
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/(12*zeta(3)) = 0.684216... (A335005). - Amiram Eldar, Nov 13 2022
a(n) = Sum_{d|n} mu(d)^2*psi(d), where psi is A001615. - Ridouane Oudra, Jul 24 2025

A344061 a(n) = Sum_{d|n} sigma(d)^(n/d).

Original entry on oeis.org

1, 4, 5, 17, 7, 56, 9, 146, 78, 298, 13, 1501, 15, 2276, 1265, 9219, 19, 25716, 21, 77519, 16929, 177328, 25, 739582, 7808, 1594562, 264382, 5611241, 31, 15699452, 33, 48863172, 4196081, 129140542, 312753, 447589422, 39, 1162261928, 67111665, 3771805472, 43, 10764897556, 45
Offset: 1

Views

Author

Seiichi Manyama, May 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, DivisorSigma[1 , #]^(n/#) &]; Array[a, 43] (* Amiram Eldar, May 08 2021 *)
  • PARI
    a(n) = sumdiv(n, d, sigma(d)^(n/d));
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, sigma(k)*x^k/(1-sigma(k)*x^k)))

Formula

G.f.: Sum_{k >= 1} sigma(k) * x^k/(1 - sigma(k) * x^k).
If p is prime, a(p) = 2 + p.

A361706 Inverse Moebius transform applied twice to primes.

Original entry on oeis.org

2, 7, 9, 19, 15, 37, 21, 50, 39, 65, 35, 116, 45, 91, 87, 134, 63, 174, 71, 200, 125, 155, 87, 322, 125, 197, 172, 282, 113, 383, 131, 349, 217, 271, 213, 555, 161, 311, 267, 546, 183, 555, 195, 482, 402, 379, 215, 857, 267, 546, 369, 602, 245, 768, 349, 774, 421, 503, 281, 1204, 287, 561, 582, 875, 425
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 21 2023

Keywords

Comments

Dirichlet convolution of primes with the number of divisors function.

Crossrefs

Programs

  • Maple
    a:= (proc(p) proc(n) uses numtheory;
           add(p(d), d=divisors(n))
         end end@@2)(ithprime):
    seq(a(n), n=1..100);  # Alois P. Heinz, Mar 23 2023
  • Mathematica
    Table[Sum[DivisorSigma[0, n/d] Prime[d], {d, Divisors[n]}], {n, 1, 65}]
  • PARI
    a(n) = sumdiv(n, d, numdiv(n/d)*prime(d)); \\ Michel Marcus, Mar 23 2023

Formula

G.f.: Sum_{i>=1} Sum_{j>=1} prime(i) * x^(i*j) / (1 - x^(i*j)).
a(n) = Sum_{d|n} A000005(n/d) * prime(d).
Previous Showing 41-50 of 61 results. Next