cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-49 of 49 results.

A106434 The (1,1)-entry of the matrix A^n, where A = [0,1;2,3].

Original entry on oeis.org

0, 2, 6, 22, 78, 278, 990, 3526, 12558, 44726, 159294, 567334, 2020590, 7196438, 25630494, 91284358, 325114062, 1157910902, 4123960830, 14687704294, 52311034542, 186308512214, 663547605726, 2363259841606, 8416874736270, 29977143892022, 106765181148606
Offset: 1

Views

Author

Roger L. Bagula, May 29 2005

Keywords

Crossrefs

Programs

  • Maple
    a[1]:=0: a[2]:=2: for n from 3 to 25 do a[n]:=3*a[n-1]+2*a[n-2] od: seq(a[n],n=1..25);
  • Mathematica
    LinearRecurrence[{3, 2}, {0, 2}, 50] (* Vladimir Joseph Stephan Orlovsky, Feb 24 2012 *)
  • PARI
    A106434(n)=([0,1;2,3]^n)[1,1] /* M. F. Hasler, Dec 01 2008 */

Formula

a(n) = 3*a(n-1) + 2*a(n-2) for n>=3; a(1)=0, a(2)=2.
O.g.f.: 2*x^2/(1-3*x-2*x^2). - R. J. Mathar, Dec 05 2007
a(n) = 2 * A007482(n-2) for n >= 2.

Extensions

Simplified definition and added cross reference. - M. F. Hasler, Dec 01 2008
Edited by N. J. A. Sloane, May 20 2006 and Dec 04 2008

A147840 a(n)=10*a(n-1)-8*a(n-2), a(0)=1, a(1)=8 .

Original entry on oeis.org

1, 8, 72, 656, 5984, 54592, 498048, 4543744, 41453056, 378180608, 3450181632, 31476371456, 287162261504, 2619811643392, 23900818341888, 218049690271744, 1989290355982336, 18148506037649408, 165570737528635392
Offset: 0

Views

Author

Philippe Deléham, Nov 14 2008

Keywords

Comments

a(n) = sum_{k=0..n} 2^n*binomial(n,k)*A007482(k) = 2^n*A052913(n). - R. J. Mathar, Oct 15 2012

Programs

  • Mathematica
    LinearRecurrence[{10,-8},{1,8},20] (* Harvey P. Dale, Dec 02 2021 *)

Formula

a(n)=Sum_{k, 0<=k<=n}A147703(n,k)*7^k . G.f.: (1-2x)/(1-10x+8*x^2).
a(n)= ((17+3*sqrt(17))/34)*(5+sqrt(17))^n + ((17-3*sqrt(17))/34)*(5-sqrt(17))^n [From Richard Choulet, Nov 20 2008]
G.f.: (1-2x)/(1-10x+8x^2). - Harvey P. Dale, Dec 02 2021

A180144 Eight rooks and one berserker on a 3 X 3 chessboard. G.f.: (1 - 2*x^2)/(1 - 4*x + x^2 + 2*x^3).

Original entry on oeis.org

1, 4, 13, 46, 163, 580, 2065, 7354, 26191, 93280, 332221, 1183222, 4214107, 15008764, 53454505, 190381042, 678052135, 2414918488, 8600859733, 30632416174, 109098967987, 388561736308, 1383883144897, 4928772907306
Offset: 0

Views

Author

Johannes W. Meijer, Aug 13 2010

Keywords

Comments

The a(n) represent the number of n-move routes of a fairy chess piece starting in a given side square (m = 2, 4, 6 or 8) on a 3 X 3 chessboard. This fairy chess piece behaves like a rook on the eight side and corner squares but on the central square the rook goes berserk and turns into a berserker, see A180140.
The sequence above corresponds to just one A[5] vector with decimal value 16. This vector leads for the corner squares to A180143 and for the central square to A000012.

Crossrefs

Cf. A180141 (corner squares), A180140 (side squares), A180147 (central square).

Programs

  • Maple
    with(LinearAlgebra): nmax:=23; m:=2; A[5]:=[0,0,0,0,1,0,0,0,0]: A:= Matrix([[0,1,1,1,0,0,1,0,0], [1,0,1,0,1,0,0,1,0], [1,1,0,0,0,1,0,0,1], [1,0,0,0,1,1,1,0,0], A[5], [0,0,1,1,1,0,0,0,1], [1,0,0,1,0,0,0,1,1], [0,1,0,0,1,0,1,0,1], [0,0,1,0,0,1,1,1,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);

Formula

G.f.: (1-2*x^2)/(1 - 4*x + x^2 + 2*x^3).
a(n) = 4*a(n-1) - 1*a(n-2) - 2*a(n-3) with a(0)=1, a(1)=4 and a(2)=13.
a(n) = 1/4 + (21-6*A)*A^(-n-1)/68 + (21-6*B)*B^(-n-1)/68 with A=(-3+sqrt(17))/4 and B=(-3-sqrt(17))/4.
Lim_{k->infinity} a(n+k)/a(k) = (-1)^(n)*(2)^(n+1)/((2*A007482(n) - 3*A007482(n-1)) - A007482(n-1)*sqrt(17)) for n >= 1.

A052986 Expansion of ( 1-2*x ) / ( (x-1)*(2*x^2+3*x-1) ).

Original entry on oeis.org

1, 2, 7, 24, 85, 302, 1075, 3828, 13633, 48554, 172927, 615888, 2193517, 7812326, 27824011, 99096684, 352938073, 1257007586, 4476898903, 15944711880, 56787933445, 202253224094, 720335539171, 2565513065700, 9137210275441, 32542656957722, 115902391424047
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Programs

  • Magma
    I:=[1, 2, 7]; [n le 3 select I[n] else 4*Self(n-1)-Self(n-2)-2*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 23 2012
    
  • Maple
    spec := [S,{S=Sequence(Union(Prod(Union(Sequence(Union(Z,Z)),Z),Z),Z))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
  • Mathematica
    Join[{a=1,b=2},Table[c=3*b+2*a-1;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 17 2011*)
    LinearRecurrence[{4,-1,-2},{1,2,7},40] (* Vincenzo Librandi, Jun 23 2012 *)
  • PARI
    a(n) = round((1/4+(2^(-3-n)*((3-sqrt(17))^n*(-5+3*sqrt(17))+(3+sqrt(17))^n*(5+3*sqrt(17))))/sqrt(17))) \\ Colin Barker, Sep 02 2016

Formula

G.f.: (1-2*x)/(1-4*x+x^2+2*x^3).
Recurrence: {a(0)=1, a(1)=2, -2*a(n)-3*a(n+1)+a(n+2)+1=0}.
a(n) = Sum(-1/136*(-13-27*r+6*r^2)*r^(-1-n) where r=RootOf(1-4*_Z+_Z^2+2*_Z^3)).
a(n) = (1/4+(2^(-3-n)*((3-sqrt(17))^n*(-5+3*sqrt(17))+(3+sqrt(17))^n*(5+3*sqrt(17))))/sqrt(17)). - Colin Barker, Sep 02 2016
4*a(n) = 1+3*A007482(n)-2*A007482(n-1) - R. J. Mathar, Feb 27 2019
a(n)-a(n-1) = A007483(n-1). - R. J. Mathar, Jan 09 2025

Extensions

More terms from James Sellers, Jun 06 2000

A120723 Expansion of x*(1+3*x)*(1+6*x+16*x^2)/((1-x)*(1+2*x)*(1-3*x-2*x^2)).

Original entry on oeis.org

1, 11, 63, 247, 887, 3207, 11383, 40679, 144663, 515719, 1835831, 6540327, 23289943, 82955975, 295436919, 1052244583, 3747563927, 13347268359, 47536758199, 169305160871, 602988299991, 2147576619847, 7648703663351
Offset: 1

Views

Author

Roger L. Bagula, Aug 17 2006

Keywords

Crossrefs

Cf. A007482.

Programs

  • Magma
    I:=[1,11,63,247]; [n le 4 select I[n] else 2*Self(n-1) + 7*Self(n-2) -4*Self(n-3) -4*Self(n-4): n in [1..40]]; // G. C. Greubel, Jul 20 2023
    
  • Mathematica
    CoefficientList[Series[(1+3x)*(1 +6x +16x^2)/((1-x)*(1+2x)*(1-3x-2x^2)), {x, 0, 50}], x] (* Bruno Berselli, Apr 04 2012 *)
    LinearRecurrence[{2,7,-4,-4}, {1,11,63,247}, 40] (* G. C. Greubel, Jul 20 2023 *)
  • SageMath
    A007482=BinaryRecurrenceSequence(3,2,1,3)
    def A120723(n): return 12*int(n==0) - (1/6)*(46 - (-2)^n + 27*(A007482(n) - 5*A007482(n-1)))
    [A120723(n) for n in range(41)] # G. C. Greubel, Jul 20 2023

Formula

G.f.: x*(1+3*x)*(1+6*x+16*x^2)/((1-x)*(1+2*x)*(1-3*x-2*x^2)). - Colin Barker, Apr 04 2012
a(n) = 12*[n=0] - 23/3 + (-2)^n/6 - (9/2)*(A007482(n) - 5*A007482(n- 1)). - G. C. Greubel, Jul 20 2023

Extensions

Edited by N. J. A. Sloane, Jun 15 2007
Meaningful name from Joerg Arndt, Dec 26 2022

A201000 Primes in the Lucas U(3,-2) sequence.

Original entry on oeis.org

3, 11, 139, 1181629920803, 85408181065579888274696997717587
Offset: 1

Views

Author

R. J. Mathar, Jan 08 2013

Keywords

Comments

The Lucas U(3,-2) sequence is 0, 1, 3, 11, 39, 139, 495, 1763, 6279, 22363..., A007482 with a leading zero. This sequence here contains U(3,-2,n) at indices n = 2, 3, 5, 23, 59, 107, 167, ...

Crossrefs

Cf. A007482.

A246313 G.f.: (-1+6*x)/(1-3*x-2*x^2).

Original entry on oeis.org

-1, 3, 7, 27, 95, 339, 1207, 4299, 15311, 54531, 194215, 691707, 2463551, 8774067, 31249303, 111296043, 396386735, 1411752291, 5028030343, 17907595611, 63778847519, 227151733779, 809012896375, 2881342156683, 10262052262799, 36548841101763, 130170627830887, 463609565696187, 1651169952750335
Offset: 0

Views

Author

N. J. A. Sloane, Aug 26 2014

Keywords

Comments

Encountered during the analysis of a certain cellular automaton.

Programs

  • Magma
    I:=[-1,3]; [n le 2 select I[n] else 3*Self(n-1)+2*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 27 2014
    
  • Maple
    a:= LRETools[REtoproc](a(n)=3*a(n-1)+2*a(n-2),a(n),{a(0)=-1,a(1)=3}):
    seq(a(i),i=0..100); # Robert Israel, Aug 27 2014
  • Mathematica
    CoefficientList[Series[(6 x - 1)/(1 - 3 x - 2 x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 27 2014 *)
  • PARI
    Vec((-1+6*x)/(1-3*x-2*x^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 02 2014

Formula

a(n) = 3*a(n-1) + 2*a(n-2) with a(0)=-1, a(1)=3.
a(n) = -(17+9*sqrt(17))/34*(3/2-sqrt(17)/2)^n+(-17+9*sqrt(17))/34*(3/2+sqrt(17)/2)^n. For n >= 3, a(n) = round((-17+9*sqrt(17))/34*(3/2+sqrt(17)/2)^n). - Robert Israel, Aug 27 2014
a(n) = 6*A007482(n-1)+A007482(n). - R. J. Mathar, Feb 27 2019

A099095 Riordan array (1,3+2x).

Original entry on oeis.org

1, 0, 3, 0, 2, 9, 0, 0, 12, 27, 0, 0, 4, 54, 81, 0, 0, 0, 36, 216, 243, 0, 0, 0, 8, 216, 810, 729, 0, 0, 0, 0, 96, 1080, 2916, 2187, 0, 0, 0, 0, 16, 720, 4860, 10206, 6561, 0, 0, 0, 0, 0, 240, 4320, 20412, 34992, 19683, 0, 0, 0, 0, 0, 32, 2160, 22680, 81648, 118098, 59049, 0, 0
Offset: 0

Views

Author

Paul Barry, Sep 25 2004

Keywords

Comments

Row sums are A007482. Diagonal sums are A053088. The Riordan array (1,s+tx) defines T(n,k)=binomial(k,n-k)s^k(t/s)^(n-k). The row sums satisfy a(n)=s*a(n-1)+t*a(n-2) and the diagonal sums satisfy a(n)=s*a(n-2)+t*a(n-3).

Examples

			Rows begin {1}, {0,3}, {0,2,9}, {0,0,12,27}, {0,0,4,54,81},...
		

Crossrefs

Cf. A038220.

Formula

Number triangle T(n, k)=binomial(k, n-k)3^k*(2/3)^(n-k); Columns have g.f. (3x+2x^2)^k.

A132964 Convolution triangle of A006190.

Original entry on oeis.org

1, 3, 1, 10, 6, 1, 33, 29, 9, 1, 109, 126, 57, 12, 1, 360, 516, 306, 94, 15, 1, 1189, 2034, 1491, 600, 140, 18, 1, 3927, 7807, 6813, 3385, 1035, 195, 21, 1, 12970, 29382, 29737, 17568, 6630, 1638, 259, 24, 1, 42837, 108923, 125406, 85826, 38493, 11739, 2436, 332, 27, 1
Offset: 0

Views

Author

Philippe Deléham, Nov 24 2007

Keywords

Comments

As a Riordan array, this is (1/(1-3x-x^2),x/(1-3x-x^2)).
T(n,k) is the number of words of length n over {0,1,2,3,4} having k letters 4 and avoiding runs of odd length for the letter 0. - Milan Janjic, Jan 14 2017

Examples

			Triangle begins:
      1;
      3,      1;
     10,      6,      1;
     33,     29,      9,     1;
    109,    126,     57,    12,     1;
    360,    516,    306,    94,    15,     1;
   1189,   2034,   1491,   600,   140,    18,    1;
   3927,   7807,   6813,  3385,  1035,   195,   21,   1;
  12970,  29382,  29737, 17568,  6630,  1638,  259,  24,  1;
  42837, 108923, 125406, 85826, 38493, 11739, 2436, 332, 27, 1;
  ...
		

Crossrefs

Formula

Sum_{k=0..n} T(n,k) = A001076(n+1).
Sum_{k=0..floor(n/2)} T(n-k,k) = A007482(n).
T(n,k) = 3*T(n-1,k) + T(n-1,k-1) + T(n-2,k), T(0,0)=1, T(n,k)=0 if k<0 or k>n. - Philippe Deléham, Dec 08 2013
Previous Showing 41-49 of 49 results.