cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 40 results.

A363695 Expansion of Sum_{k>0} (1/(1-x^k)^5 - 1).

Original entry on oeis.org

5, 20, 40, 90, 131, 265, 335, 585, 755, 1147, 1370, 2155, 2385, 3410, 4042, 5430, 5990, 8295, 8860, 11843, 13020, 16335, 17555, 23125, 23882, 29805, 32220, 39440, 40925, 51644, 52365, 64335, 67450, 79820, 82712, 101575, 101275, 120805, 125830, 148089, 149000, 179490
Offset: 1

Views

Author

Seiichi Manyama, Jun 16 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Binomial[# + 4, 4] &]; Array[a, 40] (* Amiram Eldar, Jul 05 2023 *)
  • PARI
    a(n) = sumdiv(n, d, binomial(d+4, 4));

Formula

G.f.: Sum_{k>0} binomial(k+4,4) * x^k/(1 - x^k).
a(n) = Sum_{d|n} binomial(d+4,4).

A363696 Expansion of Sum_{k>0} (1/(1-x^k)^6 - 1).

Original entry on oeis.org

6, 27, 62, 153, 258, 545, 798, 1440, 2064, 3282, 4374, 6859, 8574, 12447, 15818, 21789, 26340, 36196, 42510, 56538, 66634, 85125, 98286, 126901, 142764, 178506, 203440, 249909, 278262, 343936, 376998, 457686, 506372, 602118, 659058, 791908, 850674, 1005129, 1094638
Offset: 1

Views

Author

Seiichi Manyama, Jun 16 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Binomial[# + 5, 5] &]; Array[a, 40] (* Amiram Eldar, Jul 05 2023 *)
  • PARI
    a(n) = sumdiv(n, d, binomial(d+5, 5));

Formula

G.f.: Sum_{k>0} binomial(k+5,5) * x^k/(1 - x^k).
a(n) = Sum_{d|n} binomial(d+5,5).

A386438 a(n) = sigma(n) + omega(n) - n * Sum_{p|n, p prime} 1 / p.

Original entry on oeis.org

1, 3, 4, 6, 6, 9, 8, 12, 11, 13, 12, 20, 14, 17, 18, 24, 18, 26, 20, 30, 24, 25, 24, 42, 27, 29, 32, 40, 30, 44, 32, 48, 36, 37, 38, 63, 38, 41, 42, 64, 42, 58, 44, 60, 56, 49, 48, 86, 51, 60, 54, 70, 54, 77, 58, 86, 60, 61, 60, 109, 62, 65, 76, 96, 68, 86, 68, 90, 72, 88, 72, 137, 74, 77, 86, 100, 80, 100, 80, 132, 95, 85, 84, 145, 88, 89, 90, 130, 90, 144
Offset: 1

Views

Author

Wesley Ivan Hurt, Jul 21 2025

Keywords

Comments

For each divisor d of n, add 1 if n/d is prime, else add d.

Crossrefs

Cf. A000010 (phi), A000203 (sigma), A001221 (omega), A005171, A007503, A010051, A069359, A348219.

Programs

  • Mathematica
    Table[Sum[d^(1 - PrimePi[n/d] + PrimePi[n/d - 1]), {d, Divisors[n]}], {n, 100}]

Formula

a(n) = Sum_{d|n} d^c(n/d), where c = A005171.
a(n) = Sum_{d|n} (d + c(d) - phi(d)*omega(n/d)), where c = A010051.
a(n) = A000203(n) + A001221(n) - A069359(n).
a(n) = A007503(n) - A348219(n).

A062553 Number of Abelian subgroups of the dihedral group with 2n elements.

Original entry on oeis.org

2, 5, 5, 9, 7, 13, 9, 16, 12, 19, 13, 24, 15, 25, 19, 29, 19, 33, 21, 36, 25, 37, 25, 44, 28, 43, 31, 48, 31, 53, 33, 54, 37, 55, 39, 63, 39, 61, 43, 68, 43, 71, 45, 72, 51, 73, 49, 82, 52, 81, 55, 84, 55, 89, 59, 92, 61, 91, 61, 102, 63, 97, 69, 103, 69, 107, 69, 108, 73
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 02 2001

Keywords

Comments

The rank of the fundamental group with genus one of the D_2n; cobordism category in dimension 1+1, with D_2n the dihedral group of order 2n. - C. Segovia, Dec 05 2012

Crossrefs

Programs

  • Mathematica
    a[n_] := If[OddQ[n], n, 3n/2] + DivisorSigma[0, n];
    Array[a, 69] (* Jean-François Alcover, Feb 24 2019 *)

Formula

a(n) = n + tau(n) if n is odd, (3/2)*n + tau(n) if n is even, where tau(n) = the number of divisors of n (A000005).

Extensions

Formula and more terms from Vladeta Jovovic, Jul 05 2001

A221856 Square numbers n for which sigma(n) + d(n) is also a perfect square.

Original entry on oeis.org

9, 16, 36, 278784, 251381025, 2390623236, 240055902025, 354328515025, 1022960302225, 1298266542225, 6824670333649, 9433221536025, 16614933604164, 33314541015625, 474897452948164, 500279020818724, 1387202986290276, 2162188899431649, 16053088159411524
Offset: 1

Views

Author

Jayanta Basu, Apr 10 2013

Keywords

Examples

			16 is in the list since 16 = 4^2 and sigma(16)+d(16) = 36 = 6^2. Also 278784 = 528^2 and sigma(278784)+d(278784) = 883600 = 940^2.
		

Crossrefs

Cf. A007503.

Programs

  • Mathematica
    Sqd[n_] := Sqrt[DivisorSigma[1, n] + DivisorSigma[0, n]]; t = {}; Do[If[IntegerQ[Sqd[n^2]], AppendTo[t, n^2]], {n, 1500000}];t

Extensions

a(11)-a(19) from Donovan Johnson, Apr 10 2013

A224441 Numbers n such that sigma(n)+d(n) and sigma(n+1)+d(n+1) are perfect squares.

Original entry on oeis.org

61, 2369, 4469, 8460, 13208, 44790, 162734, 281560, 283938, 334469, 500465, 533045, 609953, 871853, 962247, 1317885, 1741445, 1792745, 2499845, 3013246, 4099031, 5646629, 7009389, 7012135, 8396781, 8740480, 8822093, 11146381, 11957693, 15002679, 18895694
Offset: 1

Views

Author

Jayanta Basu, Apr 09 2013

Keywords

Examples

			61 is in the list since sigma(61)+d(61)=64 and sigma(62)+d(62)=100.
		

Crossrefs

Programs

  • Mathematica
    Sqd[n_] := Sqrt[DivisorSigma[1, n] + DivisorSigma[0, n]]; t = {}; Do[If[IntegerQ[Sqd[n]] && IntegerQ[Sqd[n + 1]], AppendTo[t, n]], {n, 20000000}]; t
    SequencePosition[Table[If[IntegerQ[Sqrt[DivisorSigma[0,n]+DivisorSigma[1,n]]],1,0],{n,189*10^5}],{1,1}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 31 2020 *)
  • PARI
    is(n)=issquare(sigma(n)+numdiv(n))&&issquare(sigma(n+1)+ numdiv(n+1)) \\ Charles R Greathouse IV, Apr 09 2013

A264100 Sum of the lengths of the arithmetic progressions in {1,2,3,...,n}, including trivial arithmetic progressions of lengths 1 and 2.

Original entry on oeis.org

0, 1, 4, 12, 26, 50, 82, 130, 188, 265, 358, 473, 602, 765, 944, 1151, 1386, 1657, 1948, 2284, 2642, 3048, 3490, 3972, 4480, 5056, 5666, 6322, 7022, 7784, 8578, 9452, 10360, 11337, 12366, 13453, 14592, 15831, 17110, 18453, 19856, 21357, 22902, 24551
Offset: 0

Views

Author

Gionata Neri, Nov 03 2015

Keywords

Comments

Conjecture: the second differences give A007503(n+1), the sum of the divisors (A000203) plus the number of divisors (A000005) of n+1.
The first differences trivially are the total length of such sequences that end in n+1. Mapping each sequence to a different sequence by adding 1 to each term, we see that the second differences are the number of sequences up to n+2 that include both 1 and n+2. For each divisor d of n+1, there is a single such sequence of length d+1 (with increment (n+1)/d). The second difference is then sum_{d|n+1} d+1, which is sigma(n+1) + tau(n+1), as claimed. - Franklin T. Adams-Watters, Nov 05 2015

Examples

			For n = 3 the arithmetic progressions are (1), (2), (3), (1, 2), (1, 3), (2, 3), (1, 2, 3) and the respective lengths are (1), (1), (1), (2), (2), (2), (3), so a(3) = 1 + 1 + 1 + 2 + 2 + 2 + 3 = 12.
The first difference at 2, sequences ending with 3, are (3), (1, 3), (2, 3), and (1, 2, 3), total length 8 = 12-4. The second difference at 2, sequences starting with 1 and ending with 4 are (1, 4) and (1, 2, 3, 4), total length 6 = 26 - 2*12 +4.
		

Crossrefs

Programs

  • PARI
    vector(50, n, n--; n + sum(k=2, n, k*floor((n-1)/(k-1))*(2*n-(k-1)*floor((n+k-2)/(k-1)))/2)) \\ Altug Alkan, Nov 04 2015

Formula

a(n) = n + Sum_{k=2..n} k*floor((n-1)/(k-1))*(2*n-(k-1)*floor((n+k-2)/(k-1)))/2.

A163164 Positions n such that A163163(n) is not prime.

Original entry on oeis.org

1, 4, 6, 10, 12, 14, 16, 18, 20, 21, 22, 24, 25, 26, 28, 30, 34, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 64, 66, 68, 70, 72, 74, 75, 76, 78, 80, 81, 82, 84, 85, 86, 88, 90, 91, 92, 93, 94, 96, 99, 100, 102, 104, 105, 106, 108, 110, 111, 112, 114, 115
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 22 2009

Keywords

Examples

			a(1)=1 because A163163(1)=1 is not prime. a(2)=4 because A163163(4)=6 is not prime.
		

Crossrefs

Extensions

33 removed by R. J. Mathar, Jul 25 2009

A195864 Numbers k such that sigma(k) + tau(k) is a perfect number (A000396).

Original entry on oeis.org

3, 14, 15, 168, 326, 5414, 33357341, 4324809536
Offset: 1

Views

Author

Jeff Kruse, Oct 26 2011

Keywords

Comments

A002093(848) < a(9) <= 1155321467378283328. - Donovan Johnson, Nov 03 2011

Crossrefs

Cf. A000396, A002093, A007503 (sigma(n) + tau(n)).

Programs

  • Mathematica
    perfect = {6, 28, 496, 8128, 33550336, 8589869056, 137438691328}; Select[Range[10000], MemberQ[perfect, DivisorSigma[0, #] + DivisorSigma[1, #]] &] (* T. D. Noe, Nov 03 2011 *)

Extensions

a(8) from Donovan Johnson, Nov 03 2011

A248671 Number of subgroups of the dihedral group Dn that are intersections of some maximal subgroups.

Original entry on oeis.org

1, 4, 5, 4, 7, 15, 9, 4, 5, 21, 13, 15, 15, 27, 27, 4, 19, 15, 21, 21, 35, 39, 25, 15, 7, 45, 5, 27, 31, 79, 33, 4, 51, 57, 51, 15, 39, 63, 59, 21, 43, 103, 45, 39, 27, 75, 49, 15, 9, 21, 75, 45, 55, 15, 75, 27, 83, 93, 61, 79, 63, 99, 35, 4, 87, 151, 69, 57, 99, 151
Offset: 1

Views

Author

Nandor Sieben, Oct 11 2014

Keywords

Comments

Maximal subgroups are counted.
Smallest such subgroup is the Frattini subgroup.
These subgroups are called intersection subgroups in Ernst and Sieben link.

Crossrefs

Cf. A007503.

Programs

  • GAP
    for n in [1..22] do
      G:=DihedralGroup(2*n);
      Ge:=Elements(G);
      mse:=List(MaximalSubgroups(G),s->List(s,el->Position(Ge,el)));
      C:=Combinations(mse);
      Remove(C,1); # empty intersection is removed
      I:=List(C,Intersection);
      Sort(I);
      I:=Unique(I);
      Print(Size(I),",");
    od;
    
  • Mathematica
    a[n_] := With[{f = FactorInteger[n][[All, 1]]}, Sum[d+1, {d, Divisors[Times @@ f]}]-1];
    Array[a, 70] (* Jean-François Alcover, Aug 29 2018, after Andrew Howroyd *)
  • PARI
    a(n) = my(f=factor(n)[,1]); sumdiv(prod(i=1, #f, f[i]), d, d+1 ) - 1; \\ Andrew Howroyd, Jul 02 2018

Formula

a(n) = A007503(n) - 1 for squarefree n. - Andrew Howroyd, Jul 02 2018

Extensions

a(23)-a(70) from Andrew Howroyd, Jul 02 2018
Previous Showing 31-40 of 40 results.