cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 100 results. Next

A161998 Numbers n such that n^6 + 272 is prime.

Original entry on oeis.org

2163, 2541, 2667, 4011, 5187, 5733, 5985, 7119, 7371, 7707, 8547, 10017, 10731, 12579, 13041, 13125, 13293, 14007, 14679, 15855, 16317, 16401, 16863, 17283, 19131, 19383, 20139, 20475, 21021, 21357, 22197, 22995, 23457, 23667, 24591, 25053, 25389, 25641
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jun 24 2009

Keywords

Crossrefs

Programs

A209544 Primes not expressed in form n<+>2, where operation <+> defined in A206853.

Original entry on oeis.org

3, 17, 41, 73, 89, 97, 113, 137, 193, 233, 241, 257, 281, 313, 337, 353, 401, 409, 433, 449, 457, 521, 569, 577, 593, 601, 617, 641, 673, 761, 769, 809, 857, 881, 929, 937, 953, 977, 1009, 1033, 1049, 1097, 1129, 1153, 1193, 1201, 1217, 1249, 1289, 1297, 1321
Offset: 1

Views

Author

Keywords

Comments

Trivially every odd prime is expressed in form n<+>1 (cf. A208982).
Are these related to A141174, A045390 or A007519? - R. J. Mathar, Mar 13 2012

Crossrefs

Formula

For n>=2, a(n) = A007519(n-1). - Vladimir Shevelev, Apr 18 2012

A242663 Nonnegative integers of the form x^2 + 4*x*y - 4*y^2.

Original entry on oeis.org

0, 1, 4, 8, 9, 16, 17, 25, 28, 32, 36, 41, 49, 56, 64, 68, 72, 73, 81, 89, 92, 97, 100, 112, 113, 121, 124, 128, 136, 137, 144, 153, 161, 164, 169, 184, 188, 193, 196, 200, 217, 224, 225, 233, 241, 248, 252, 256, 257, 272, 281, 284, 288, 289, 292
Offset: 1

Views

Author

N. J. A. Sloane, May 31 2014

Keywords

Comments

Discriminant 32.
Also numbers representable as x^2 + 6*x*y + y^2 with 0 <= x <= y. - Gheorghe Coserea, Jul 29 2018
Also numbers of the form x^2 - 8*y^2. - Jianing Song, Jul 31 2018

Crossrefs

Cf. A031363.
Primes in this sequence = A007519.

Programs

  • Mathematica
    Reap[For[n = 0, n <= 300, n++, If[Reduce[ x^2 + 4*x*y - 4*y^2 == n, {x, y}, Integers] =!= False, Sow[n]]]][[2, 1]]
  • PARI
    seq(M, k=6) = {
    setintersect([1..M], setbinop((x, y)->x^2 + k*x*y + y^2, [0..1+sqrtint(M)]));
    };
    concat(0, seq(292)) \\ Gheorghe Coserea, Jul 31 2018

A343104 Smallest number having exactly n divisors of the form 8*k + 1.

Original entry on oeis.org

1, 9, 81, 153, 891, 1377, 8019, 3825, 11025, 15147, 88209, 31977, 354375, 99225, 121275, 95931, 7144929, 187425, 893025, 287793, 1403325, 1499553, 1715175, 675675, 1091475, 6024375, 1576575, 1686825, 72335025, 2027025, 2264802453041139, 2297295, 11609325, 121463793, 9823275
Offset: 1

Views

Author

Jianing Song, Apr 05 2021

Keywords

Comments

Smallest index of n in A188169.
a(n) exists for all n, since 3^(2n-2) has exactly n divisors of the form 8*k + 1, namely 3^0, 3^2, ..., 3^(2n-2). This actually gives an upper bound for a(n).
From David A. Corneth, Apr 05 2021: (Start)
All terms are odd since if a term is even then the odd part has the same number of such divisors.
No a(2*k + 1) is divisible by a prime congruent to 1 (mod 8).
If for some k, A188169(k) > m then A188169(k*t) > m for all t > 0. This can be used to trim searches when looking for some a(m).
If gcd(k, m) = 1 then A188169(k) * A188169(m) <= A188169(k*m) (End)

Examples

			a(4) = 153 since it is the smallest number with exactly 4 divisors congruent to 1 modulo 8, namely 1, 9, 17 and 153.
		

Crossrefs

Smallest number having exactly n divisors of the form 8*k + i: this sequence (i=1), A343105 (i=3), A343106 (i=5), A188226 (i=7).
Cf. A188169.

Programs

  • PARI
    res(n,a,b) = sumdiv(n, d, (d%a) == b)
    a(n) = if(n>0, for(k=1, oo, if(res(k,8,1)==n, return(k))))

Formula

a(2n-1) <= 3^(2n-2) * 11, since 3^(2n-2) * 11 has exactly 2n-1 divisors congruent to 1 modulo 8: 3^0, 3^2, ..., 3^(2n-2), 3^1 * 11, 3^3 * 11, ..., 3^(2n-3) * 11.
a(2n) <= 3^(n-1) * 187, since 3^(n-1) * 187 has exactly 2n divisors congruent to 1 modulo 8: 3^0, 3^2, ..., 3^b, 3^0 * 17, 3^2 * 17, ..., 3^b * 17, 3^1 * 11, 3^3 * 11, ..., 3^a * 11, 3^1 * 187, 3^3 * 187, ... 3^a * 187, where a is the largest odd number <= n-1 and b is the largest even number <= n-1.

Extensions

More terms from David A. Corneth, Apr 06 2021

A014755 3 and -3 are both 4th powers (one implies other) mod these primes p=1 mod 8.

Original entry on oeis.org

193, 313, 433, 577, 601, 673, 769, 937, 1201, 1297, 1321, 1657, 1801, 1993, 2137, 2473, 2521, 2593, 2833, 2953, 3169, 3529, 3673, 3697, 3769, 3889, 4057, 4129, 4153, 4297, 4441, 4513, 4561, 4801, 4969, 5113, 5209, 5233, 5281, 5449, 5521
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A007519.

Programs

  • Maple
    filter:= proc(p) isprime(p) and [msolve(x^4=3, p)] <> [] end proc:
    select(filter, [seq(i,i=1..10^4, 8)]); # Robert Israel, May 07 2019
  • Mathematica
    okQ[p_] := PrimeQ[p] && Solve[x^4 == 3, x, Modulus -> p] != {};
    Select[Range[1, 10000, 8], okQ] (* Jean-François Alcover, Feb 08 2023 *)
  • PARI
    forprime(p=1,9999,p%8==1&&ispower(Mod(3,p),4)&&print1(p",")) \\ M. F. Hasler, Feb 18 2014
    
  • PARI
    is_A014755(p)={p%8==1&&ispower(Mod(3,p),4)&&isprime(p)} \\ M. F. Hasler, Feb 18 2014
    
  • Python
    from itertools import count, islice
    from sympy import nextprime, is_nthpow_residue
    def A014755_gen(startvalue=2): # generator of terms >= startvalue
        p = max(nextprime(startvalue-1),2)
        while True:
            if p&7==1 and is_nthpow_residue(3,4,p) and is_nthpow_residue(-3,4,p):
                yield p
            p = nextprime(p)
    A014755_list = list(islice(A014755_gen(),20)) # Chai Wah Wu, May 02 2024

Extensions

Offset changed from 0 to 1 by Bruno Berselli, Feb 20 2014

A045390 Primes congruent to {1, 2} mod 8.

Original entry on oeis.org

2, 17, 41, 73, 89, 97, 113, 137, 193, 233, 241, 257, 281, 313, 337, 353, 401, 409, 433, 449, 457, 521, 569, 577, 593, 601, 617, 641, 673, 761, 769, 809, 857, 881, 929, 937, 953, 977, 1009, 1033, 1049, 1097, 1129
Offset: 1

Views

Author

Keywords

Comments

Essentially the same as A007519: 2 followed by A007519.
Primes p such that -1 is a 4th power (mod p). E.g.: 1^4 == -1 (mod 2), 2^4 == -1 (mod 17), 3^4 == -1 (mod 41), 10^4 == -1 (mod 73). - Eric M. Schmidt, Mar 27 2014

Crossrefs

Cf. A000040.

Programs

  • Magma
    [p: p in PrimesUpTo(1300) | p mod 8 in [1, 2]]; // Vincenzo Librandi, Aug 11 2012
  • Mathematica
    Select[Prime[Range[300]],MemberQ[{1,2},Mod[#,8]]&] (* Vincenzo Librandi, Aug 11 2012 *)

A060940 Triangle in which n-th row gives the phi(n) terms appearing as initial primes in arithmetic progressions with difference n, with initial term equal to the smallest positive residue coprimes to n.

Original entry on oeis.org

2, 3, 7, 5, 5, 7, 11, 7, 13, 19, 7, 11, 29, 23, 17, 11, 19, 13, 17, 11, 13, 23, 19, 11, 13, 23, 43, 17, 11, 13, 17, 19, 23, 13, 47, 37, 71, 17, 29, 19, 31, 43, 13, 17, 19, 23, 53, 41, 29, 17, 31, 19, 59, 47, 61, 23, 37, 103, 29, 17, 19, 23, 53, 41, 31, 17, 19, 37, 23, 41, 43, 29
Offset: 1

Views

Author

Labos Elemer, May 07 2001

Keywords

Examples

			For differences 1, 2, 3, 4, 5, 6, 7, .. the initial primes are 2; 3; 7, 5; 5, 7; 11, 7, 13, 19; 7, 11; 29, 23, 17, 11, 19, 13; ... etc. Suitable initial values (coprimes to difference) are in A038566. Position of end(start) of rows is given by values of A002088.
From _Seiichi Manyama_, Apr 02 2018: (Start)
   n | phi(n)|
  ---+-------+------------------------
   1 |   1   |  2;
   2 |   1   |  3;
   3 |   2   |  7,  5;
   4 |   2   |  5,  7;
   5 |   4   | 11,  7, 13, 19;
   6 |   2   |  7, 11;
   7 |   6   | 29, 23, 17, 11, 19, 13;
   8 |   4   | 17, 11, 13, 23;
   9 |   6   | 19, 11, 13, 23, 43, 17;
  10 |   4   | 11, 13, 17, 19;         (End)
		

Crossrefs

A139494 Primes of the form x^2 + 11x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

13, 43, 61, 79, 103, 127, 139, 157, 181, 199, 211, 277, 283, 313, 337, 367, 373, 433, 439, 523, 547, 571, 601, 607, 673, 727, 751, 757, 823, 829, 859, 883, 907, 919, 937, 991, 997, 1039, 1063, 1069, 1093, 1117, 1153, 1171, 1213, 1231, 1249, 1291, 1297
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; w = 11; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a] (*Artur Jasinski*)

A139506 Primes of the form x^2 + 26x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

193, 337, 457, 673, 1009, 1033, 1129, 1201, 1297, 1801, 1873, 2017, 2137, 2377, 2473, 2521, 2689, 2713, 2857, 3049, 3217, 3313, 3361, 3529, 3697, 3889, 4057, 4153, 4201, 4561, 4657, 4729, 4993, 5209, 5233, 5569, 5737, 5881, 6073, 6217, 6337, 6553, 6577
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Comments

Also primes of the form x^2 + 168y^2. - T. D. Noe, Apr 29 2008
In base 12, the sequence is 141, 241, 321, 481, 701, 721, 7X1, 841, 901, 1061, 1101, 1201, 12X1, 1461, 1521, 1561, 1681, 16X1, 17X1, 1921, 1X41, 1E01, 1E41, 2061, 2181, 2301, 2421, 24X1, 2521, 2781, 2841, 28X1, 2X81, 3021, 3041, 3281, 33X1, 34X1, 3621, 3721, 3801, 3961, 3981, where X is 10 and E is 11. Moreover, the discriminant is 480. - Walter Kehowski, Jun 01 2008

Crossrefs

Programs

  • Mathematica
    a = {}; w = 26; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a]

Formula

The primes are congruent to {1, 25, 121} (mod 168). - T. D. Noe, Apr 29 2008

A139512 Primes of the form x^2 + 32*x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

229, 349, 409, 421, 661, 769, 829, 1021, 1069, 1249, 1381, 1429, 1549, 1789, 1801, 1861, 2089, 2161, 2269, 2389, 3001, 3061, 3109, 3181, 3229, 3469, 3889, 4021, 4129, 4201, 4441, 4861, 4909, 5101, 5449, 5521, 5869, 5881, 6121, 6469, 6481, 6529, 6781
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Comments

Are all terms == 1 mod 12? - Zak Seidov, Apr 25 2008
Yes: (i) all terms == 1 mod 3 because the quadratic form has terms == {0,1} mod 3 and the values ==0 mod 3 are not primes. (ii) all terms == 1 mod 4 because the quadratic form has terms == {0,1,2} mod 4 and the values = {0,2} mod 4 are not primes. By the Chinese remainder constructions for coprime 3 and 4 all prime terms are == 1 mod 12. - R. J. Mathar, Jun 10 2020

Crossrefs

Programs

  • Mathematica
    a = {}; w = 32; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a] (*Artur Jasinski*)
Previous Showing 51-60 of 100 results. Next