cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 51 results. Next

A263011 Numbers D == 1 (mod 8), not a square, and if composite without prime factors 3 or 5 (mod 8).

Original entry on oeis.org

17, 41, 73, 89, 97, 113, 137, 161, 193, 217, 233, 241, 257, 281, 313, 329, 337, 353, 401, 409, 433, 449, 457, 497, 521, 553, 569, 577, 593, 601, 617, 641, 673, 697, 713, 721, 761, 769, 809, 833, 857, 881, 889, 929, 937, 953, 977, 1009, 1033, 1049, 1057, 1081, 1097, 1129, 1153, 1169, 1193, 1201, 1217
Offset: 1

Views

Author

Wolfdieter Lang, Nov 17 2015

Keywords

Comments

These numbers are the odd D candidates for the (generalized) Pell equation x^2 - D*y^2 = +8 which could have proper solutions (x, y) with x and y both odd (and gcd(x, y) = 1).
Proof: Put x =2*X + 1, y = 2*Y + 1; then 8*(T(X) - D*T(Y)) = 8 - 1 + D = 7 + D, with the triangular numbers T = A000217. Hence, D == -7 (mod 8) == +1 (mod 8). Only nonsquare numbers D are considered for the Pell equation (square D leads to a factorization with only one solution: D = 1, (x, y) = (3, 1)). Consider a prime factor p == 3 or 5 (mod 8) (A007520 or A007521) of D. Then x^2 == 8 (mod p). Because the Legendre symbol (8/p) = (2*2^2/p) = (2/p) == (-1)^(p^2-1)/8 (see, e.g., Nagell, eq. (3), p. 138) this becomes -1 for these primes p, and therefore a candidate for D cannot have any prime factors 3 or 5 (mod 8).
However, not all of these candidates admit solutions. For the exceptions see A264348.
The remaining Ds (that admit solutions) are given in A263012.

References

  • T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964.

Crossrefs

Programs

  • Mathematica
    Select[8 Range@ 154 + 1, Or[PrimeQ@ #, CompositeQ@ # && AllTrue[Union@ Mod[First /@ FactorInteger@ #, 8], ! MemberQ[{3, 5}, #] &]] && ! IntegerQ@ Sqrt@ # &] (* Michael De Vlieger, Dec 11 2015, Version 10 *)

A023229 Primes p such that 8*p + 3 is also prime.

Original entry on oeis.org

2, 5, 7, 13, 17, 31, 41, 43, 47, 61, 71, 73, 101, 103, 107, 113, 127, 131, 157, 163, 181, 191, 197, 223, 233, 241, 251, 281, 283, 293, 307, 317, 337, 367, 383, 421, 433, 443, 457, 461, 467, 491, 503, 563, 631, 643, 647, 653, 673, 677, 691, 733, 751, 761, 787, 797, 811
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n: n in PrimesUpTo(1000) | IsPrime(8*n+3)]; // Vincenzo Librandi, Nov 20 2010
  • Maple
    a := proc (n) if isprime(n) = true and isprime(8*n+3) = true then n else end if end proc: seq(a(n), n = 1 .. 900); # Emeric Deutsch, Dec 26 2008
  • Mathematica
    Select[Prime@Range@500, PrimeQ[8 # + 3] &] (* Vincenzo Librandi, May 19 2014 *)

A045339 Primes congruent to {2, 3} mod 8.

Original entry on oeis.org

2, 3, 11, 19, 43, 59, 67, 83, 107, 131, 139, 163, 179, 211, 227, 251, 283, 307, 331, 347, 379, 419, 443, 467, 491, 499, 523, 547, 563, 571, 587, 619, 643, 659, 683, 691, 739, 787, 811, 827, 859, 883, 907, 947
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A007520.

Programs

  • Magma
    [ p: p in PrimesUpTo(1200) | p mod 8 in {2, 3} ]; // Vincenzo Librandi, Aug 07 2012
  • Mathematica
    Select[Prime[Range[200]],MemberQ[{2,3},Mod[#,8]]&] (* Harvey P. Dale, Oct 31 2011 *)

Formula

{2} UNION A007520. - R. J. Mathar, Dec 04 2011

A332446 Numbers k for which A087808(sigma(k)) is equal to A087808(2*k).

Original entry on oeis.org

3, 6, 11, 19, 28, 43, 59, 67, 83, 107, 131, 139, 163, 179, 211, 216, 227, 251, 267, 283, 286, 307, 331, 347, 379, 419, 443, 467, 491, 496, 499, 523, 547, 563, 571, 587, 598, 619, 643, 659, 683, 691, 726, 739, 787, 811, 827, 859, 883, 907, 947, 971, 1019, 1051, 1091, 1123, 1163, 1171, 1187, 1259, 1283, 1291, 1307, 1427, 1451
Offset: 1

Views

Author

Antti Karttunen, Feb 14 2020

Keywords

Comments

Conjecture: includes all terms of A007520. - Bill McEachen, Dec 10 2023

Crossrefs

Subsequences: A000396, A332445.
Cf. A331751, A331752, A332208 for similar sequences.

Programs

A343104 Smallest number having exactly n divisors of the form 8*k + 1.

Original entry on oeis.org

1, 9, 81, 153, 891, 1377, 8019, 3825, 11025, 15147, 88209, 31977, 354375, 99225, 121275, 95931, 7144929, 187425, 893025, 287793, 1403325, 1499553, 1715175, 675675, 1091475, 6024375, 1576575, 1686825, 72335025, 2027025, 2264802453041139, 2297295, 11609325, 121463793, 9823275
Offset: 1

Views

Author

Jianing Song, Apr 05 2021

Keywords

Comments

Smallest index of n in A188169.
a(n) exists for all n, since 3^(2n-2) has exactly n divisors of the form 8*k + 1, namely 3^0, 3^2, ..., 3^(2n-2). This actually gives an upper bound for a(n).
From David A. Corneth, Apr 05 2021: (Start)
All terms are odd since if a term is even then the odd part has the same number of such divisors.
No a(2*k + 1) is divisible by a prime congruent to 1 (mod 8).
If for some k, A188169(k) > m then A188169(k*t) > m for all t > 0. This can be used to trim searches when looking for some a(m).
If gcd(k, m) = 1 then A188169(k) * A188169(m) <= A188169(k*m) (End)

Examples

			a(4) = 153 since it is the smallest number with exactly 4 divisors congruent to 1 modulo 8, namely 1, 9, 17 and 153.
		

Crossrefs

Smallest number having exactly n divisors of the form 8*k + i: this sequence (i=1), A343105 (i=3), A343106 (i=5), A188226 (i=7).
Cf. A188169.

Programs

  • PARI
    res(n,a,b) = sumdiv(n, d, (d%a) == b)
    a(n) = if(n>0, for(k=1, oo, if(res(k,8,1)==n, return(k))))

Formula

a(2n-1) <= 3^(2n-2) * 11, since 3^(2n-2) * 11 has exactly 2n-1 divisors congruent to 1 modulo 8: 3^0, 3^2, ..., 3^(2n-2), 3^1 * 11, 3^3 * 11, ..., 3^(2n-3) * 11.
a(2n) <= 3^(n-1) * 187, since 3^(n-1) * 187 has exactly 2n divisors congruent to 1 modulo 8: 3^0, 3^2, ..., 3^b, 3^0 * 17, 3^2 * 17, ..., 3^b * 17, 3^1 * 11, 3^3 * 11, ..., 3^a * 11, 3^1 * 187, 3^3 * 187, ... 3^a * 187, where a is the largest odd number <= n-1 and b is the largest even number <= n-1.

Extensions

More terms from David A. Corneth, Apr 06 2021

A178985 Primes of the form 3^k mod 2^k, in the order in which they are found.

Original entry on oeis.org

3, 19, 11, 227, 1019, 269201, 186023729, 457933343698297657, 2267602862220213494836920572800947269169358383491, 3510117420185552058703020362961660520827436011216742688744177
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jan 03 2011

Keywords

Comments

Can it be shown that this is always an increasing sequence?
{a(n)} is an increasing sequence because {a(n)} is a subsequence of the integer sequence {b(n)} = (fractional part of (3/2)^n without the decimal point)/5^n = A204544(n) / 5^n = prime terms of A002380. - Michel Lagneau, Jan 25 2012
Corresponding n: 3, 5, 7, 9, 11, 20, 28, 62, 161, 204, 471, 505, 881, 1810, 1812, 2506, 3321, ... - Eric Chen, Jun 13 2018

Crossrefs

Programs

  • Mathematica
    f[n_] := PowerMod[3, n, 2^n]; Select[f@ Range@ 300, PrimeQ]

A201914 Least prime p such that p+1 is divisible by 2^n and not by 2^(n+1).

Original entry on oeis.org

2, 5, 3, 7, 47, 31, 191, 127, 1279, 3583, 5119, 6143, 20479, 8191, 81919, 294911, 1114111, 131071, 786431, 524287, 17825791, 14680063, 138412031, 109051903, 654311423, 1912602623, 738197503, 2818572287, 7247757311, 3758096383, 228707008511, 2147483647
Offset: 0

Views

Author

T. D. Noe, Dec 27 2011

Keywords

Comments

See A126717 for the least k such that k*2^n-1 is prime.
For every n >= 1 there are infinitely many prime numbers p such that p + 1 is divisible by 2^n and not by 2^(n + 1). - Marius A. Burtea, Mar 10 2020

References

  • Laurențiu Panaitopol, Alexandru Gica, Arithmetic problems and number theory, Ed. Gil, Zalău, (2006), ch. 13, p. 78, pr. 5 (in Romanian).

Crossrefs

Cf. A008864 (primes + 1), A057775 (p-1 case), A126717.
For n>0, sequence is first term of A002144, A007520, A141194, A142041, A142939, ...

Programs

  • Magma
    a:=[]; for n in [0..31] do k:=1; while not IsPrime(k*2^n-1) do k:=k+2; end while; Append(~a,k*2^n-1); end for; a; // Marius A. Burtea, Mar 10 2020
  • Mathematica
    Table[k = 1; While[p = k*2^n - 1; ! PrimeQ[p], k = k + 2]; p, {n, 0, 40}]

A243177 Numbers of the form 3x^2+2xy+3y^2.

Original entry on oeis.org

0, 3, 4, 8, 11, 12, 16, 19, 24, 27, 32, 36, 43, 44, 48, 51, 59, 64, 67, 68, 72, 75, 76, 83, 88, 96, 99, 100, 107, 108, 123, 128, 131, 132, 136, 139, 144, 147, 152, 163, 164, 171, 172, 176, 179, 187, 192, 196, 200, 204, 211, 216, 219, 227, 228, 236, 243, 251, 256, 264, 267, 268, 272, 275, 283, 288, 291, 292, 300, 304, 307, 323, 324, 328, 331, 332, 339, 344, 347
Offset: 1

Views

Author

N. J. A. Sloane, Jun 02 2014

Keywords

Comments

Discriminant -32.

Crossrefs

Primes: A007520.

Programs

  • Mathematica
    ofTheFormQ[n_] := Reduce[n == 3*x^2 + 2*x*y + 3*y^2, {x, y}, Integers] =!= False; Select[Range[0, 400], ofTheFormQ] (* Jean-François Alcover, Jun 04 2014 *)
  • PARI
    is(n)=if(n==0, return(1)); my(h=valuation(n,2),f=factor(n>>h),s); if(h==1, return(0)); for(i=1,#f~, if(f[i,1]%8==3, s+=f[i,2], f[i,1]%8>3 && f[i,2]%2, return(0))); h>1 || s%2 \\ Charles R Greathouse IV, Feb 10 2020

A294912 Numbers n such that 2^(n-1), (2*n-1)*(2^((n-1)/2)), (4*ceiling((3/4)*n)-2), and (2^((n+1)/2) + floor((1/4)*n)*2^(((n+1)/2)+1)) are all congruent to 1 (mod n).

Original entry on oeis.org

3, 11, 19, 43, 59, 67, 83, 107, 131, 139, 163, 179, 211, 227, 251, 283, 307, 331, 347, 379, 419, 443, 467, 491, 499, 523, 547, 563, 571, 587, 619, 643, 659, 683, 691, 739, 787, 811, 827, 859, 883, 907, 947, 971, 1019, 1051, 1091, 1123, 1163, 1171, 1187, 1259
Offset: 1

Views

Author

Jonas Kaiser, Nov 10 2017

Keywords

Comments

It appears that A007520 is a subsequence.
The first composite term is a(9969) = 476971 = 11*131*331. - Alois P. Heinz, Nov 10 2017
From Hilko Koning, Dec 03 2019: (Start)
The next composite terms < 1999979 are
a(17428) = 877099 = 307*2857
a(25090) = 1302451 = 571*2281
a(25518) = 1325843 = 499*2657
a(26785) = 1397419 = 67*20857
a(27549) = 1441091 = 347*4153
a(28715) = 1507963 = 971*1553
a(29117) = 1530787 = 619*2473
a(35635) = 1907851 = 11*251*691
(End)
From Hilko Koning, Dec 05 2019: (Start)
The next composite terms < 24999971 are
a(37344) = 2004403 = 307*6529
a(55773) = 3090091 = 1163*2657
a(56189) = 3116107 = 883*3529
a(91332) = 5256091 = 811*6481
a(102027) = 5919187 = 1777*3331
a(133230) = 7883731 = 811*9721
a(156407) = 9371251 = 1531*6121
a(182911) = 11081459 = 227*48817
a(189922) = 11541307 = 1699*6793
a(201043) = 12263131 = 811*15121
a(213203) = 13057787 = 467*27961
a(217484) = 13338371 = 3163*4217
a(257526) = 15976747 = 3739*4273
a(274961) = 17134043 = 1097*15619
a(299096) = 18740971 = 1531*12241
a(308928) = 19404139 = 2011*9649
a(321676) = 20261251 = 2251*9001
a(341902) = 21623659 = 1163*18593
a(348622) = 22075579 = 163*135433
a(380162) = 24214051 = 281*86171
The composite terms < 25*10^6 match the terms of A244628.
(End)
It appears that composites of the form 2k+1 such that 3*(2k+1) divides 2^k+1 are the composite terms of this sequence. - Hilko Koning, Dec 09 2019

Crossrefs

Programs

  • Mathematica
    okQ[n_] := AllTrue[{2^(n-1), (2*n-1)*(2^((n-1)/2)), (4*Ceiling@((3/4)*n) - 2), (2^((n+1)/2) + Floor@(n/4)*2^(((n+1)/2)+1))}, Mod[#, n] == 1&];
    Select[Range[1300], okQ] (* Jean-François Alcover, Feb 18 2019 *)
  • PARI
    isok(n) = (n%2) && lift((Mod(2, n)^(n-1))==1)&&lift((Mod((2*n-1), n)*Mod(2, n)^((n-1)/2)) == 1)&&lift((Mod(((4*ceil((3/4)*n)-2)), n) )== 1)&&lift((Mod(2, n)^((n+1)/2) +Mod(floor((1/4)*n),n)*Mod(2, n)^(((n+1)/2)+1 ))== 1)

Extensions

More terms from Alois P. Heinz, Nov 10 2017

A336792 Values of odd prime numbers, D, for incrementally largest values of minimal positive y satisfying the equation x^2 - D*y^2 = -2.

Original entry on oeis.org

3, 19, 43, 67, 139, 211, 331, 379, 571, 739, 859, 1051, 1291, 1531, 1579, 1699, 2011, 2731, 3019, 3259, 3691, 3931, 5419, 5659, 5779, 6211, 6379, 6451, 8779, 9619, 10651, 16699, 17851, 18379, 21739, 25939, 32971, 42331, 42571, 44851, 50131, 53299, 55819, 56611, 60811, 61051, 73459, 76651, 90619, 90931
Offset: 1

Views

Author

Christine Patterson, Oct 14 2020

Keywords

Comments

For the corresponding y values see A336793.
For solutions of this Diophantine equation it is sufficient to consider the odd primes p(n) := A007520(n), for n >= 1, the primes 3 (mod 8). Also prime 2 has the fundamental solution (x, y) = (0, 1). If there is a solution for p(n) then there is only one infinite family of solutions because there is only one representative parallel primitive binary quadratic form for Discriminant Disc = 4*p(n) and representation k = -2. Only proper solutions can occur. The conjecture is that each p(n) leads to solutions. For the fundamental solutions (with prime 2) see A339881 and A339882. - Wolfdieter Lang, Dec 22 2020

Examples

			For D=3, the least positive y for which x^2-D*y^2=-2 has a solution is 1. The next prime, D, for which x^2-D*y^2=-2 has a solution is 11, but the smallest positive y in this case is also 1, which is equal to the previous record y. So 11 is not a term.
The next prime, D, after 11 for which x^2-D*y^2=-2 has a solution is 19 and the least positive y for which it has a solution is y=3, which is larger than 1, so it is a new record y value. So 19 is a term of this sequence and 3 is a term of A336793.
		

Crossrefs

Cf. A033316 (analogous for x^2-D*y^2=1), A336790 (similar sequence for x's), A336793.
Previous Showing 21-30 of 51 results. Next